Do you want to publish a course? Click here

[Plasma 2020 Decadal] Multipoint Measurements of the Solar Wind: A Proposed Advance for Studying Magnetized Turbulence

421   0   0.0 ( 0 )
 Added by Kristopher Klein
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

A multi-institutional, multi-national science team will soon submit a NASA proposal to build a constellation of spacecraft to fly into the near-Earth solar wind in a swarm spanning a multitude of scales in order to obtain critically needed measurements that will reveal the underlying dynamics of magnetized turbulence. This white paper, submitted to the Plasma 2020 Decadal Survey Committee, provides a brief overview of turbulent systems that constitute an area of compelling plasma physics research, including why this mission is needed, and how this mission will achieve the goal of revealing how energy is transferred across scales and boundaries in plasmas throughout the universe.



rate research

Read More

This paper briefly reviews a number of fundamental measurements that need to be made in order to characterize turbulence in space plasmas such as the solar wind. It has long been known that many of these quantities require simultaneous multipoint measurements to attain a proper characterization that would reveal the fundamental physics of plasma turbulence. The solar wind is an ideal plasma for such an investigation, and it now appears to be technologically feasible to carry out such an investigation, following the pioneering Cluster and MMS missions. Quantities that need to be measured using multipoint measurements include the two-point, two-time second correlation function of velocity, magnetic field and density, and higher order statistical objects such as third and fourth order structure functions. Some details of these requirements are given here, with a eye towards achieving closure on fundamental questions regarding the cascade rate, spectral anisotropy, characteristic coherent structures, intermittency, and dissipation mechanisms that describe plasma turbuelence, as well as its variability with plasma parameters in the solar wind. The motivation for this discussion is the current planning for a proposed Helioswarm mission that would be designed to make these measurements,leading to breakthrough understanding of the physics of space and astrophysical turbulence.
This white paper submitted for 2020 Decadal Assessment of Plasma Science concerns the importance of multi-spacecraft missions to address fundamental questions concerning plasma turbulence. Plasma turbulence is ubiquitous in the universe, and it is responsible for the transport of mass, momentum, and energy in such diverse systems as the solar corona and wind, accretion discs, planet formation, and laboratory fusion devices. Turbulence is an inherently multi-scale and multi-process phenomenon, coupling the largest scales of a system to sub-electron scales via a cascade of energy, while simultaneously generating reconnecting current layers, shocks, and a myriad of instabilities and waves. The solar wind is humankinds best resource for studying the naturally occurring turbulent plasmas that permeate the universe. Since launching our first major scientific spacecraft mission, Explorer 1, in 1958, we have made significant progress characterizing solar wind turbulence. Yet, due to the severe limitations imposed by single point measurements, we are unable to characterize sufficiently the spatial and temporal properties of the solar wind, leaving many fundamental questions about plasma turbulence unanswered. Therefore, the time has now come wherein making significant additional progress to determine the dynamical nature of solar wind turbulence requires multi-spacecraft missions spanning a wide range of scales simultaneously. A dedicated multi-spacecraft mission concurrently covering a wide range of scales in the solar wind would not only allow us to directly determine the spatial and temporal structure of plasma turbulence, but it would also mitigate the limitations that current multi-spacecraft missions face, such as non-ideal orbits for observing solar wind turbulence. Some of the fundamentally important questions that can only be addressed by in situ multipoint measurements are discussed.
A long-lasting debate in space plasma physics concerns the nature of subproton-scale fluctuations in solar wind (SW) turbulence. Over the past decade, a series of theoretical and observational studies were presented in favor of either kinetic Alfven wave (KAW) or whistler turbulence. Here, we investigate numerically the nature of the subproton-scale turbulent cascade for typical SW parameters by means of unprecedented high-resolution simulations of forced hybrid-kinetic turbulence in two real-space and three velocity-space dimensions. Our analysis suggests that small-scale turbulence in this model is dominated by KAWs at $betagtrsim1$ and by magnetosonic/whistler fluctuations at lower $beta$. The spectral properties of the turbulence appear to be in good agreement with theoretical predictions. A tentative interpretation of this result in terms of relative changes in the damping rates of the different waves is also presented. Overall, the results raise interesting new questions about the properties and variability of subproton-scale turbulence in the SW, including its possible dependence on the plasma $beta$, and call for detailed and extensive parametric explorations of driven kinetic turbulence in three dimensions.
Recent analytical works on strong magnetized plasma turbulence have hypothesized the existence of a range of scales where the tearing instability may govern the energy cascade. In this paper, we estimate the conditions under which such tearing may give rise to full nonlinear magnetic reconnection in the turbulent eddies, thereby enabling significant energy conversion and dissipation. When those conditions are met, a new turbulence regime is accessed where reconnection-driven energy dissipation becomes common, rather than the rare feature that it must be when they are not.
Understanding the nature of the turbulent fluctuations below the ion gyroradius in solar-wind turbulence is a great challenge. Recent studies have been mostly in favor of kinetic Alfven wave (KAW) type of fluctuations, but other kinds of fluctuations with characteristics typical of magnetosonic, whistler and ion Bernstein modes, could also play a role depending on the plasma parameters. Here we investigate the properties of the sub-proton-scale cascade with high-resolution hybrid-kinetic simulations of freely-decaying turbulence in 3D3V phase space, including electron inertia effects. Two proton plasma beta are explored: the intermediate $beta_p=1$ and low $beta_p=0.2$ regimes, both typically observed in solar wind and corona. The magnetic energy spectum exhibits $k_perp^{-8/3}$ and $k_|^{-7/2}$ power laws at $beta_p=1$, while they are slightly steeper at $beta_p=0.2$. Nevertheless, both regimes develop a spectral anisotropy consistent with $k_|sim k_perp^{2/3}$ at $k_perprho_p>1$, and pronounced small-scale intermittency. In this context, we find that the kinetic-scale cascade is dominated by KAW-like fluctuations at $beta_p=1$, whereas the low-$beta$ case presents a more complex scenario suggesting the simultaneous presence of different types of fluctuations. In both regimes, however, a non-negligible role of ion Bernstein type of fluctuations at the smallest scales seems to emerge.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا