No Arabic abstract
We consider a subclass of Horndeski theories for studying cosmic inflation. In particular, we investigate models of inflation in which the derivative self-interaction of the scalar field and the non-minimal derivative coupling to gravity are present in the action and equally important during inflation. In order to control contributions of each term as well as to approach the single-term limit, we introduce a special relation between the derivative interaction and the coupling to gravity. By calculating observable quantities including the power spectra and spectral tilts of scalar and tensor perturbation modes, and the tensor-to-scalar ratio, we found that the tensor-to-scalar ratio is suppressed by a factor of $(1+1/gamma)$, where $gamma$ reflects the strength of the derivative self-interaction of the inflaton field with respect to the derivative coupling gravity. We placed observational constraints on the chaotic and natural inflation models and showed that the models are consistent with the current observational data mainly due to the suppressed tensor-to-scalar ratio.
The predictions of standard Higgs inflation in the framework of the metric formalism yield a tensor-to-scalar ratio $r sim 10^{-3}$ which lies well within the expected accuracy of near-future experiments $ sim 10^{-4}$. When the Palatini formalism is employed, the predicted values of $r$ get highly-suppressed $rsim 10^{-12}$ and consequently a possible non-detection of primordial tensor fluctuations will rule out only the metric variant of the model. On the other hand, the extremely small values predicted for $r$ by the Palatini approach constitute contact with observations a hopeless task for the foreseeable future. In this work, we propose a way to remedy this issue by extending the action with the inclusion of a generalized non-minimal derivative coupling term between the inflaton and the Einstein tensor of the form $m^{-2}(phi) G_{mu u} abla^{mu}phi abla^{ u}phi$. We find that with such a modification, the Palatini predictions can become comparable with the ones obtained in the metric formalism, thus providing ample room for the model to be in contact with observations in the near future.
We derive the general formulae for the the scalar and tensor spectral tilts to the second order for the inflationary models with non-minimally derivative coupling without taking the high friction limit. The non-minimally kinetic coupling to Einstein tensor brings the energy scale in the inflationary models down to be sub-Planckian. In the high friction limit, the Lyth bound is modified with an extra suppression factor, so that the field excursion of the inflaton is sub-Planckian. The inflationary models with non-minimally derivative coupling are more consistent with observations in the high friction limit. In particular, with the help of the non-minimally derivative coupling, the quartic power law potential is consistent with the observational constraint at 95% CL.
We classify the metric-affine theories of gravitation, in which the metric and the connections are treated as independent variables, by use of several constraints on the connections. Assuming the Einstein-Hilbert action, we find that the equations for the distortion tensor (torsion and non-metricity) become algebraic, which means that those variables are not dynamical. As a result, we can rewrite the basic equations in the form of Riemannian geometry. Although all classified models recover the Einstein gravity in the Palatini formalism (in which we assume there is no coupling between matter and the connections), but when matter field couples to the connections, the effective Einstein equations include an additional hyper energy-momentum tensor obtained from the distortion tensor. Assuming a simple extension of a minimally coupled scalar field in metric-affine gravity, we analyze an inflationary scenario. Even if we adopt a chaotic inflation potential, certain parameters could satisfy observational constraints. Furthermore, we find that a simple form of Galileon scalar field in metric-affine could cause G-inflation.
We show that gravitational theories with a nonminimal coupling (NMC) to the matter fields lead to a violation of Etheringtons distance-duality relation, which relates the luminosity and angular diameter distances. We derive constraints on power-law and exponential NMC models using existing measurements of type Ia supernovae and baryon acoustic oscillations throughout the redshift range $0<z<1.5$. These complement previous constrains derived from cosmic-microwave background radiation and big-bang nucleosynthesis data.
We perform a phase space analysis of a generalized modified gravity theory with nonminimally coupling between geometry and matter. We apply the dynamical system approach to this generalized model and find that in the cosmological context, different choices of Lagrangian density will apparently result in different phases of the Universe. By carefully choosing the variables, we prove that there is an attractor solution to describe the late time accelerating universe when the modified gravity is chosen in a simple power-law form of the curvature scalar. We further examine the temperature evolution based on the thermodynamic understanding of the model. Confronting the model with supernova type Ia data sets, we find that the nonminimally coupled theory of gravity is a viable model to describe the late time Universe acceleration.