Do you want to publish a course? Click here

DeepCount: Crowd Counting with WiFi via Deep Learning

62   0   0.0 ( 0 )
 Added by Shangqing Liu
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Recently, the research of wireless sensing has achieved more intelligent results, and the intelligent sensing of human location and activity can be realized by means of WiFi devices. However, most of the current human environment perception work is limited to a single persons environment, because the environment in which multiple people exist is more complicated than the environment in which a single person exists. In order to solve the problem of human behavior perception in a multi-human environment, we first proposed a solution to achieve crowd counting (inferred population) using deep learning in a closed environment with WIFI signals - DeepCout, which is the first in a multi-human environment. step. Since the use of WiFi to directly count the crowd is too complicated, we use deep learning to solve this problem, use Convolutional Neural Network(CNN) to automatically extract the relationship between the number of people and the channel, and use Long Short Term Memory(LSTM) to resolve the dependencies of number of people and Channel State Information(CSI) . To overcome the massive labelled data required by deep learning method, we add an online learning mechanism to determine whether or not someone is entering/leaving the room by activity recognition model, so as to correct the deep learning model in the fine-tune stage, which, in turn, reduces the required training data and make our method evolving over time. The system of DeepCount is performed and evaluated on the commercial WiFi devices. By massive training samples, our end-to-end learning approach can achieve an average of 86.4% prediction accuracy in an environment of up to 5 people. Meanwhile, by the amendment mechanism of the activity recognition model to judge door switch to get the variance of crowd to amend deep learning predicted results, the accuracy is up to 90%.



rate research

Read More

We present the DeepWiFi protocol, which hardens the baseline WiFi (IEEE 802.11ac) with deep learning and sustains high throughput by mitigating out-of-network interference. DeepWiFi is interoperable with baseline WiFi and builds upon the existing WiFis PHY transceiver chain without changing the MAC frame format. Users run DeepWiFi for i) RF front end processing; ii) spectrum sensing and signal classification; iii) signal authentication; iv) channel selection and access; v) power control; vi) modulation and coding scheme (MCS) adaptation; and vii) routing. DeepWiFi mitigates the effects of probabilistic, sensing-based, and adaptive jammers. RF front end processing applies a deep learning-based autoencoder to extract spectrum-representative features. Then a deep neural network is trained to classify waveforms reliably as idle, WiFi, or jammer. Utilizing channel labels, users effectively access idle or jammed channels, while avoiding interference with legitimate WiFi transmissions (authenticated by machine learning-based RF fingerprinting) resulting in higher throughput. Users optimize their transmit power for low probability of intercept/detection and their MCS to maximize link rates used by backpressure algorithm for routing. Supported by embedded platform implementation, DeepWiFi provides major throughput gains compared to baseline WiFi and another jamming-resistant protocol, especially when channels are likely to be jammed and the signal-to-interference-plus-noise-ratio is low.
Automatic estimation of the number of people in unconstrained crowded scenes is a challenging task and one major difficulty stems from the huge scale variation of people. In this paper, we propose a novel Deep Structured Scale Integration Network (DSSINet) for crowd counting, which addresses the scale variation of people by using structured feature representation learning and hierarchically structured loss function optimization. Unlike conventional methods which directly fuse multiple features with weighted average or concatenation, we first introduce a Structured Feature Enhancement Module based on conditional random fields (CRFs) to refine multiscale features mutually with a message passing mechanism. In this module, each scale-specific feature is considered as a continuous random variable and passes complementary information to refine the features at other scales. Second, we utilize a Dilated Multiscale Structural Similarity loss to enforce our DSSINet to learn the local correlation of peoples scales within regions of various size, thus yielding high-quality density maps. Extensive experiments on four challenging benchmarks well demonstrate the effectiveness of our method. Specifically, our DSSINet achieves improvements of 9.5% error reduction on Shanghaitech dataset and 24.9% on UCF-QNRF dataset against the state-of-the-art methods.
Background: Despite recent significant progress in the development of automatic sleep staging methods, building a good model still remains a big challenge for sleep studies with a small cohort due to the data-variability and data-inefficiency issues. This work presents a deep transfer learning approach to overcome these issues and enable transferring knowledge from a large dataset to a small cohort for automatic sleep staging. Methods: We start from a generic end-to-end deep learning framework for sequence-to-sequence sleep staging and derive two networks as the means for transfer learning. The networks are first trained in the source domain (i.e. the large database). The pretrained networks are then finetuned in the target domain (i.e. the small cohort) to complete knowledge transfer. We employ the Montreal Archive of Sleep Studies (MASS) database consisting of 200 subjects as the source domain and study deep transfer learning on three different target domains: the Sleep Cassette subset and the Sleep Telemetry subset of the Sleep-EDF Expanded database, and the Surrey-cEEGrid database. The target domains are purposely adopted to cover different degrees of data mismatch to the source domains. Results: Our experimental results show significant performance improvement on automatic sleep staging on the target domains achieved with the proposed deep transfer learning approach. Conclusions: These results suggest the efficacy of the proposed approach in addressing the above-mentioned data-variability and data-inefficiency issues. Significance: As a consequence, it would enable one to improve the quality of automatic sleep staging models when the amount of data is relatively small. The source code and the pretrained models are available at http://github.com/pquochuy/sleep_transfer_learning.
Crowd counting is an application-oriented task and its inference efficiency is crucial for real-world applications. However, most previous works relied on heavy backbone networks and required prohibitive run-time consumption, which would seriously restrict their deployment scopes and cause poor scalability. To liberate these crowd counting models, we propose a novel Structured Knowledge Transfer (SKT) framework, which fully exploits the structured knowledge of a well-trained teacher network to generate a lightweight but still highly effective student network. Specifically, it is integrated with two complementary transfer modules, including an Intra-Layer Pattern Transfer which sequentially distills the knowledge embedded in layer-wise features of the teacher network to guide feature learning of the student network and an Inter-Layer Relation Transfer which densely distills the cross-layer correlation knowledge of the teacher to regularize the students feature evolutio Consequently, our student network can derive the layer-wise and cross-layer knowledge from the teacher network to learn compact yet effective features. Extensive evaluations on three benchmarks well demonstrate the effectiveness of our SKT for extensive crowd counting models. In particular, only using around $6%$ of the parameters and computation cost of original models, our distilled VGG-based models obtain at least 6.5$times$ speed-up on an Nvidia 1080 GPU and even achieve state-of-the-art performance. Our code and models are available at {url{https://github.com/HCPLab-SYSU/SKT}}.
In this paper, we address the challenging problem of crowd counting in congested scenes. Specifically, we present Inverse Attention Guided Deep Crowd Counting Network (IA-DCCN) that efficiently infuses segmentation information through an inverse attention mechanism into the counting network, resulting in significant improvements. The proposed method, which is based on VGG-16, is a single-step training framework and is simple to implement. The use of segmentation information results in minimal computational overhead and does not require any additional annotations. We demonstrate the significance of segmentation guided inverse attention through a detailed analysis and ablation study. Furthermore, the proposed method is evaluated on three challenging crowd counting datasets and is shown to achieve significant improvements over several recent methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا