Do you want to publish a course? Click here

Highly coherent spin states in carbon nanotubes coupled to cavity photons

69   0   0.0 ( 0 )
 Added by Takis Kontos
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Spins confined in quantum dots are considered as a promising platform for quantum information processing. While many advanced quantum operations have been demonstrated, experimental as well as theoretical efforts are now focusing on the development of scalable spin quantum bit architectures. One particularly promising method relies on the coupling of spin quantum bits to microwave cavity photons. This would enable the coupling of distant spins via the exchange of virtual photons for two qubit gate applications, which still remains to be demonstrated with spin qubits. Here, we use a circuit QED spin-photon interface to drive a single electronic spin in a carbon nanotube based double quantum dot using cavity photons. The microwave spectroscopy allows us to identify an electrically controlled spin transition with a decoherence rate which can be tuned to be as low as $250kHz$. We show that this value is consistent with the expected hyperfine coupling in carbon nanotubes. These coherence properties, which can be attributed to the use of pristine carbon nanotubes stapled inside the cavity, should enable coherent spin-spin interaction via cavity photons and compare favourably to the ones recently demonstrated in Si-based circuit QED experiments.



rate research

Read More

We have used a femtosecond pump-probe impulsive Raman technique to explore the polarization dependence of coherent optical phonons in highly-purified and aligned semiconducting single-wall carbon nanotubes (SWCNTs). Coherent phonon spectra for the radial breathing modes (RBMs) exhibit a different monochromatic frequency between the film and solution samples, indicating the presence of differing exciton excitation processes. By varying the polarization of the incident pump beam on the aligned SWCNT film, we found that the anisotropy of the coherent RBM excitation depends on the laser wavelength, which we consider to be associated with the resonant and off-resonant behavior of RBM excitation.
Electron spins and photons are complementary quantum-mechanical objects that can be used to carry, manipulate and transform quantum information. To combine these resources, it is desirable to achieve the coherent coupling of a single spin to photons stored in a superconducting resonator. Using a circuit design based on a nanoscale spin-valve, we coherently hybridize the individual spin and charge states of a double quantum dot while preserving spin coherence. This scheme allows us to achieve spin-photon coupling up to the MHz range at the single spin level. The cooperativity is found to reach 2.3, and the spin coherence time is about 60ns. We thereby demonstrate a mesoscopic device suitable for non-destructive spin read-out and distant spin coupling.
99 - Y. S. Lim , K. J. Yee , J. H. Kim 2006
We have generated and detected the radial-breathing mode of coherent lattice vibrations in single-walled carbon nanotubes using ultrashort laser pulses. Because the band gap is a function of diameter, these diameter oscillations cause ultrafast band gap oscillations, modulating interband excitonic resonances at the phonon frequencies (3-9 THz). Excitation spectra show a large number of pronounced peaks, mapping out chirality distributions in great detail.
We review recent studies of coherent phonons (CPs) corresponding to the radial breathing mode (RBM) and G-mode in single-wall carbon nanotubes (SWCNTs) and graphene. Because of the bandgap-diameter relationship, RBM-CPs cause bandgap oscillations in SWCNTs, modulating interband transitions at terahertz frequencies. Interband resonances enhance CP signals, allowing for chirality determination. Using pulse shaping, one can selectively excite speci!c-chirality SWCNTs within an ensemble. G-mode CPs exhibit temperature-dependent dephasing via interaction with RBM phonons. Our microscopic theory derives a driven oscillator equation with a density-dependent driving term, which correctly predicts CP trends within and between (2n+m) families. We also find that the diameter can initially increase or decrease. Finally, we theoretically study the radial breathing like mode in graphene nanoribbons. For excitation near the absorption edge, the driving term is much larger for zigzag nanoribbons. We also explain how the armchair nanoribbon width changes in response to laser excitation.
Coupling carbon nanotube devices to microwave circuits offers a significant increase in bandwidth and signal-to-noise ratio. These facilitate fast non-invasive readouts important for quantum information processing, shot noise and correlation measurements. However, creation of a device that unites a low-disorder nanotube with a low-loss microwave resonator has so far remained a challenge, due to fabrication incompatibility of one with the other. Employing a mechanical transfer method, we successfully couple a nanotube to a gigahertz superconducting matching circuit and thereby retain pristine transport characteristics such as the control over formation of, and coupling strengths between, the quantum dots. Resonance response to changes in conductance and susceptance further enables quantitative parameter extraction. The achieved near matching is a step forward promising high-bandwidth noise correlation measurements on high impedance devices such as quantum dot circuits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا