Do you want to publish a course? Click here

Observational signatures of microlensing in gravitational waves at LIGO/Virgo frequencies

59   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Microlenses with typical stellar masses (a few ${rm M}_{odot}$) have traditionally been disregarded as potential sources of gravitational lensing effects at LIGO/Virgo frequencies, since the time delays are often much smaller than the inverse of the frequencies probed by LIGO/Virgo, resulting in negligible interference effects at LIGO/Virgo frequencies. While this is true for isolated microlenses in this mass regime, we show how, under certain circumstances and for realistic scenarios, a population of microlenses (for instance stars and remnants from a galaxy halo or from the intracluster medium) embedded in a macromodel potential (galaxy or cluster) can conspire together to produce time delays of order one millisecond which would produce significant interference distortions in the observed strains. At sufficiently large magnification factors (of several hundred), microlensing effects should be common in gravitationally lensed gravitational waves. We explore the regime where the predicted signal falls in the frequency range probed by LIGO/Virgo. We find that stellar mass microlenses, permeating the lens plane, and near critical curves, can introduce interference distortions in strongly lensed gravitational waves. For those lensed events with negative parity, (or saddle points, never studied before in the context of gravitational waves), and that take place near caustics of macromodels, they are more likely to produce measurable interference effects at LIGO/Virgo frequencies. This is the first study that explores the effect of a realistic population of microlenses, plus a macromodel, on strongly lensed gravitational waves.



rate research

Read More

245 - Jose M. Diego 2019
Gravitational waves from binary black holes that are gravitationally lensed can be distorted by small microlenses along the line of sight. Microlenses with masses of a few tens of solar masses, and that are close to a critical curve in the lens plane, can introduce a time delay of a few millisecond. Such time delay would result in distinctive interference patterns in the gravitational wave that can be measured with current experiments such as LIGO/Virgo. We consider the particular case of primordial black holes with masses between 5 and 50 solar masses acting as microlenses. We study the effect of a population of primordial black holes constituting a fraction of the dark matter, and contained in a macrolens (galaxy or cluster), over gravitational waves that are being lensed by the combined effect of the macrolens plus microlenses. We find that at the typical magnifications expected for observed GW events, the fraction of dark matter in the form of compact microlenses, such as primordial black holes, can be constrained to percent level. Similarly, if a small percentage of the dark matter is in the form of microlenses with a few tens of solar masses, at sufficiently large magnification factors, all gravitational waves will show interference effects. These effects could have an impact on the inferred parameters. The effect is more important for macroimages with negative parity, which usually arrive after the macroimages with positive parity.
Recently, the LIGO-Virgo Collaboration (LVC) concluded that there is no evidence for lensed gravitational waves (GW) in the first half of the O3 run, claiming We find the observation of lensed events to be unlikely, with the fractional rate at $mu>2$ being $3.3times 10^{-4}$. While we agree that the chance of an individual GW event being lensed at $mu>2$ is smaller than $10^{-3}$, the number of observed events depends on the product of this small probability times the rate of mergers at high redshift. Observational constraints from the stochastic GW background indicate that the rate of conventional mass BBH mergers (8 < M (M$_{odot}$) < 15) in the redshift range 1<z< 2 could be as high as O($10^7$) events per year, more than sufficient to compensate for the intrinsically low probability of lensing. To reach the LVC trigger threshold these events require high magnification, but would still produce up to 10 to 30 LVC observable events per year. Thus, all the LVC observed ordinary stellar mass BBH mergers from this epoch must be strongly lensed. By adopting low-rates at high redshift, LVC assumes that lensed events can not be taking place, thus incorrectly assigning them a closer distance and higher masses by a factor of a few (typically 2 to 5). The LVC adopted priors on time delay are in tension with the distribution of observed time delays in lensed quasars. Pairs of events like GW190421-GW190910 and GW190424-GW190910, which are directly assigned a probability of zero by LVC, should be instead considered as prime candidates to be strongly lensed GW pairs, since their separation in time is consistent with observations of time delays in lensed quasars. Correcting for the LVC wrong Bayesian priors, maximum merger rate of conventional mass BBH in 1<z<2, and gravitational lensing time-delay model, reverses the LVC conclusions and supports the strong gravitational lensing hypothesis.
Strong lensing of gravitational waves is more likely for distant sources but predicted event rates are highly uncertain with many astrophysical origins proposed. Here we open a new avenue to estimate the event rate of strongly lensed systems by exploring the amplitude of the stochastic gravitational wave background (SGWB). This method can provide a direct upper bound on the high redshift binary coalescing rates, which can be translated into an upper bound on the expected rate of strongly lensed systems. We show that from the ongoing analysis of the Laser Interferometer Gravitational-wave Observatory (LIGO)-Virgo and in the future from the LIGO-Virgo design sensitivity stringent bounds on the lensing event rate can be imposed using the SGWB signal. Combining measurements of loud gravitational wave events with an unresolved stochastic background detection will improve estimates of the numbers of lensed events at high redshift. The proposed method is going to play a crucial in understanding the population of lensed and unlensed systems from gravitational wave observations.
We analyse the LIGO-Virgo data, including the recently released GWTC-2 dataset, to test a hypothesis that the data contains more than one population of black holes. We perform a maximum likelihood analysis including a population of astrophysical black holes with a truncated power-law mass function whose merger rate follows from star formation rate, and a population of primordial black holes for which we consider log-normal and critical collapse mass functions. We find that primordial black holes alone are strongly disfavoured by the data, while the best fit is obtained for the template combining astrophysical and primordial merger rates. Alternatively, the data may hint towards two different astrophysical black hole populations. We also update the constraints on primordial black hole abundance from LIGO-Virgo observations finding that in the $2-400 M_{odot}$ mass range, they must comprise less than 0.2% of dark matter.
We present results of a search for periodic gravitational wave signals with frequency between 20 and 400 Hz, from the neutron star in the supernova remnant G347.3-0.5, using LIGO O2 public data. The search is deployed on the volunteer computing project Einstein@Home, with thousands of participants donating compute cycles to make this endevour possible. We find no significant signal candidate and set the most constraining upper limits to date on the amplitude of gravitational wave signals from the target, corresponding to deformations below $10^{-6}$ in a large part of the band. At the frequency of best strain sensitivity, near $166$ Hz, we set 90% confidence upper limits on the gravitational wave intrinsic amplitude of $h_0^{90%}approx 7.0times10^{-26}$. Over most of the frequency range our upper limits are a factor of 20 smaller than the indirect age-based upper limit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا