Do you want to publish a course? Click here

Neutrino Topology Reconstruction at DUNE and Applications to Searches for Dark Matter Annihilation in the Sun

339   0   0.0 ( 0 )
 Added by Carsten Rott
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider a new technique for neutrino energy and topology reconstruction at DUNE. In particular, we show that when the direction of the incoming neutrino is known, one can use the measured directions of the outgoing leptonic and hadronic particles to reconstruct poorly-measured quantities, such as the hadronic cascade energy. We show that this alternative technique yields an energy resolution which is comparable to current reconstruction methods which sum measured energies. As a proof of concept we apply this new reconstruction method to a search for dark matter annihilation in the Sun. We show that the use of directional information from both the leptonic and hadronic interaction products allows one to effectively reject backgrounds and isolate the signal, giving competitive sensitivities.



rate research

Read More

Weakly interacting massive particles (WIMPs) can be gravitationally captured by the Sun and trapped in its core. The annihilation of those WIMPs into Standard Model particles produces a spectrum of neutrinos whose energy distribution is related to the dark matter mass. In this work, we present the theoretical framework for relating an observed neutrino flux to the WIMP-nucleon cross section and summarize a previous solar WIMP search carried out by IceCube. We then outline an ongoing updated solar WIMP search, focusing on improvements over the previous search.
A search for muon neutrinos originating from dark matter annihilations in the Sun is performed using the data recorded by the ANTARES neutrino telescope from 2007 to 2012. In order to obtain the best possible sensitivities to dark matter signals, an optimisation of the event selection criteria is performed taking into account the background of atmospheric muons, atmospheric neutrinos and the energy spectra of the expected neutrino signals. No significant excess over the background is observed and $90%$ C.L. upper limits on the neutrino flux, the spin--dependent and spin--independent WIMP-nucleon cross--sections are derived for WIMP masses ranging from $ rm 50$ GeV to $rm 5$ TeV for the annihilation channels $rm WIMP + WIMP to b bar b, W^+ W^-$ and $rm tau^+ tau^-$.
We are at the dawn of a data-driven era in astrophysics and cosmology. A large number of ongoing and forthcoming experiments combined with an increasingly open approach to data availability offer great potential in unlocking some of the deepest mysteries of the Universe. Among these is understanding the nature of dark matter (DM)---one of the major unsolved problems in particle physics. Characterizing DM through its astrophysical signatures will require a robust understanding of its distribution in the sky and the use of novel statistical methods. The first part of this thesis describes the implementation of a novel statistical technique which leverages the clumpiness of photons originating from point sources (PSs) to derive the properties of PS populations hidden in astrophysical datasets. This is applied to data from the Fermi satellite at high latitudes ($|b| > 30$deg) to characterize the contribution of PSs of extragalactic origin. We find that the majority of extragalactic gamma-ray emission can be ascribed to unresolved PSs having properties consistent with known sources such as active galactic nuclei. This leaves considerably less room for significant dark matter contribution. The second part of this thesis poses the question: what is the best way to look for annihilating dark matter in extragalactic sources? and attempts to answer it by constructing a pipeline to robustly map out the distribution of dark matter outside the Milky Way using galaxy group catalogs. This framework is then applied to Fermi data and existing group catalogs to search for annihilating dark matter in extragalactic galaxies and clusters.
A search for high-energy neutrinos coming from the direction of the Sun has been performed using the data recorded by the ANTARES neutrino telescope during 2007 and 2008. The neutrino selection criteria have been chosen to maximize the selection of possible signals produced by the self-annihilation of weakly interacting massive particles accumulated in the centre of the Sun with respect to the atmospheric background. After data unblinding, the number of neutrinos observed towards the Sun was found to be compatible with background expectations. The $90%$ CL upper limits in terms of spin-dependent and spin-independent WIMP-proton cross-sections are derived and compared to predictions of two supersymmetric models, CMSSM and MSSM-7. The ANTARES limits are competitive with those obtained by other neutrino observatories and are more stringent than those obtained by direct search experiments for the spin-dependent WIMP-proton cross-section.
Cosmic rays interacting in the solar atmosphere produce showers that result in a flux of high-energy neutrinos from the Sun. These form an irreducible background to indirect solar WIMP co-annihilation searches, which look for heavy dark matter particles annihilating into final states containing neutrinos in the Solar core. This background will eventually create a sensitivity floor for indirect WIMP co-annihilation searches analogous to that imposed by low-energy solar neutrino interactions for direct dark matter detection experiments. We present a new calculation of the flux of solar atmospheric neutrinos with a detailed treatment of systematic uncertainties inherent in solar atmospheric shower evolution, and we use this to derive the sensitivity floor for indirect solar WIMP annihilation analyses. We find that the floor lies less than one order of magnitude beyond the present experimental limits on spin-dependent WIMP-proton cross sections for some mass points, and that the high-energy solar atmospheric neutrino flux may be observable with running and future neutrino telescopes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا