No Arabic abstract
We present new Hubble Space Telescope and ground-based Keck observations and new Keplerian orbit solutions for the mutual orbit of binary Jupiter Trojan asteroid (617) Patroclus and Menoetius, targets of NASAs Lucy mission. We predict event times for the upcoming mutual event season, which is anticipated to run from late 2017 through mid 2019.
Asteroids with satellites are natural laboratories to constrain the formation and evolution of our solar system. The binary Trojan asteroid (624) Hektor is the only known Trojan asteroid to possess a small satellite. Based on W.M. Keck adaptive optics observations, we found a unique and stable orbital solution, which is uncommon in comparison to the orbits of other large multiple asteroid systems studied so far. From lightcurve observations recorded since 1957, we showed that because the large Req=125-km primary may be made of two joint lobes, the moon could be ejecta of the low-velocity encounter, which formed the system. The inferred density of Hektors system is comparable to the L5 Trojan doublet (617) Patroclus but due to their difference in physical properties and in reflectance spectra, both captured Trojan asteroids could have a different composition and origin.
A new Hubble Space Telescope observation of the 7:4 resonant transneptunian binary system (385446) Manwe has shown that, of two previously reported solutions for the orbit of its satellite Thorondor, the prograde one is correct. The orbit has a period of 110.18 $pm$ 0.02 days, semimajor axis of 6670 $pm$ 40 km, and an eccentricity of 0.563 $pm$ 0.007. It will be viewable edge-on from the inner solar system during 2015-2017, presenting opportunities to observe mutual occultation and eclipse events. However, the number of observable events will be small, owing to the long orbital period and expected small sizes of the bodies relative to their separation. This paper presents predictions for events observable from Earth-based telescopes and discusses the associated uncertainties and challenges.
Determining the binary fraction for a population of asteroids, particularly as a function of separation between the two components, helps describe the dynamical environment at the time the binaries formed, which in turn offers constraints on the dynamical evolution of the solar system. We searched the NEOWISE archival dataset for close and contact binary Trojans and Hildas via their diagnostically large lightcurve amplitudes. We present 48 out of 554 Hilda and 34 out of 953 Trojan binary candidates in need of follow-up to confirm their large lightcurve amplitudes and subsequently constrain the binary orbit and component sizes. From these candidates, we calculate a preliminary estimate of the binary fraction without confirmation or debiasing of 14-23% for Trojans larger than ~12 km and 30-51% for Hildas larger than ~4 km. Once the binary candidates have been confirmed, it should be possible to infer the underlying, debiased binary fraction through estimation of survey biases.
The Trojan asteroids of Jupiter and Neptune are likely to have been captured from original heliocentric orbits in the dynamically excited (hot) population of the Kuiper belt. However, it has long been known that the optical color distributions of the Jovian Trojans and the hot population are not alike. This difference has been reconciled with the capture hypothesis by assuming that the Trojans were resurfaced (for example, by sublimation of near-surface volatiles) upon inward migration from the Kuiper belt (where blackbody temperatures are $sim$40 K) to Jupiters orbit ($sim$125 K). Here, we examine the optical color distribution of the textit{Neptunian} Trojans using a combination of new optical photometry and published data. We find a color distribution that is statistically indistinguishable from that of the Jovian Trojans but unlike any sub-population in the Kuiper belt. This result is puzzling, because the Neptunian Trojans are very cold (blackbody temperature $sim$50 K) and a thermal process acting to modify the surface colors at Neptunes distance would also affect the Kuiper belt objects beyond, where the temperatures are nearly identical. The distinctive color distributions of the Jovian and Neptunian Trojans thus present us with a conundrum: they are very similar to each other, suggesting either capture from a common source or surface modification by a common process. However, the color distributions differ from any plausible common source population, and there is no known modifying process that could operate equally at both Jupiter and Neptune.
We present astrometric observations of the Saturnian satellites Mimas, Enceladus, Tethys, Dione and Rhea from Cassini Imaging Science Subsystem (ISS) narrow-angle camera (NAC) images. Image sequences were designed to observe mutual occultations between these satellites. The positions of satellite centres were estimated by fitting ellipsoidal shape models to the measured limbs of the imaged satellites. Spacecraft pointing corrections were computed using the UCAC2 star catalogue. We provide a total of 2303 astrometric observations, resulting in 976 pairs, the remainder consisting of observations of a single satellite. Mean residuals for the individual satellite positions relative to the SAT360 ephemeris were 4.3 km in the line direction and -2.4 km in the sample direction, with standard deviations of 5.6 and 7.0 km respectively, an order of magnitude improvement in precision compared to published HST observations. By considering inter-satellite separations, uncertainties in camera pointing and spacecraft positioning along with possible biases in the individual positions of the satellites can be largely eliminated, resulting in an order-of-magnitude increase in accuracy compared to that achievable using the individual satellite positions. We show how factors relating to the viewing geometry cause small biases in the individual positions of order 0.28 pixel to become systematic across the dataset as a whole and discuss options for reducing their effects . The reduced astrometric data are provided in the form of individual positions for each satellite, together with the measured positions of reference stars, in order to allow more flexibility in the processing of the observations, taking into account possible future advances in limb-fitting techniques as well as the future availability of more accurate star catalogues, such as those from the GAIA mission.