Do you want to publish a course? Click here

Natively Fat-Suppressed 5D Whole-Heart MRI with a Radial Free-Running Fast-Interrupted Steady-State (FISS) Sequence at 1.5T and 3T

71   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Purpose: To implement, optimize and test fast interrupted steady-state (FISS) for natively fat-suppressed free-running 5D whole-heart MRI at 1.5T and 3T. Methods: FISS was implemented for fully self-gated free-running cardiac- and respiratory-motion-resolved radial imaging of the heart at 1.5T and 3T. Numerical simulations and phantom scans were performed to compare fat suppression characteristics and to determine parameter ranges (readouts per FISS module (NR) and repetition time (TR)) for effective fat suppression. Subsequently, free-running FISS data were collected in ten healthy volunteers. All acquisitions were compared with a continuous bSSFP version of the same sequence, and both fat suppression and scan times were analyzed. Results: Simulations demonstrate a variable width and location of suppression bands in FISS that was dependent on TR and NR. For a fat suppression bandwidth of 100Hz and NR below 8, simulations demonstrated that a TR between 2.2ms and 3.0ms is required at 1.5T while a range of 3.0ms to 3.5ms applies at 3T. Fat signal increases with NR. These findings were corroborated in phantom experiments. In volunteers, fat SNR was significantly decreased using FISS compared with bSSPF at both field strengths. After protocol optimization, high-resolution (1.1mm x 1.1mm x 1.1mm) 5D whole-heart free-running FISS can be performed with effective fat suppression in under 8 min at 1.5T and 3T at a modest scan time increase compared to bSSFP.Conclusion: An optimal FISS parameter range was determined enabling natively fat-suppressed 5D whole-heart free-running MRI with a single continuous scan at 1.5T and 3T, demonstrating potential for cardiac imaging and noncontrast angiography.

rate research

Read More

Purpose: To develop a MRI acquisition and reconstruction framework for volumetric cine visualisation of the fetal heart and great vessels in the presence of maternal and fetal motion. Methods: Four-dimensional depiction was achieved using a highly-accelerated multi-planar real-time balanced steady state free precession acquisition combined with retrospective image-domain techniques for motion correction, cardiac synchronisation and outlier rejection. The framework was evaluated and optimised using a numerical phantom, and evaluated in a study of 20 mid- to late-gestational age human fetal subjects. Reconstructed cine volumes were evaluated by experienced cardiologists and compared with matched ultrasound. A preliminary assessment of flow-sensitive reconstruction using the velocity information encoded in the phase of dynamic images is included. Results: Reconstructed cine volumes could be visualised in any 2D plane without the need for highly-specific scan plane prescription prior to acquisition or for maternal breath hold to minimise motion. Reconstruction was fully automated aside from user-specified masks of the fetal heart and chest. The framework proved robust when applied to fetal data and simulations confirmed that spatial and temporal features could be reliably recovered. Expert evaluation suggested the reconstructed volumes can be used for comprehensive assessment of the fetal heart, either as an adjunct to ultrasound or in combination with other MRI techniques. Conclusion: The proposed methods show promise as a framework for motion-compensated 4D assessment of the fetal heart and great vessels.
In radial fast spin-echo MRI, a set of overlapping spokes with an inconsistent T2 weighting is acquired, which results in an averaged image contrast when employing conventional image reconstruction techniques. This work demonstrates that the problem may be overcome with the use of a dedicated reconstruction method that further allows for T2 quantification by extracting the embedded relaxation information. Thus, the proposed reconstruction method directly yields a spin-density and relaxivity map from only a single radial data set. The method is based on an inverse formulation of the problem and involves a modeling of the received MRI signal. Because the solution is found by numerical optimization, the approach exploits all data acquired. Further, it handles multi-coil data and optionally allows for the incorporation of additional prior knowledge. Simulations and experimental results for a phantom and human brain in vivo demonstrate that the method yields spin-density and relaxivity maps that are neither affected by the typical artifacts from TE mixing, nor by streaking artifacts from the incomplete k-space coverage at individual echo times.
Purpose: To develop a robust and flexible low power water excitation pulse that enables effective fat suppression at high magnetic field strength. Methods: A water excitation method that uses spatially non-selective pulses was optimized in numerical simulations, and implemented and tested in phantoms and healthy volunteers at 3T. The lipid insensitive binomial off-resonant excitation (LIBRE) pulse comprises two low power rectangular sub-pulses that have a variable frequency offset, phase offset and duration. The capability and extent of LIBRE fat suppression was quantitatively compared with conventional fat saturation (FS) and water excitation (WE) techniques. Results: LIBRE enables simultaneous water excitation and near complete fat suppression in large volumes at 3T as demonstrated by numerical simulations, and experiments. In phantoms and in human subjects, the frequency responses matched well with those from the numerical simulation. Comparing FS and WE, LIBRE demonstrated an improved robustness to magnetic field inhomogeneities, and a much more effectively suppressed fat signal. This applied for a range of pulse durations and pulses as short as 1.4 ms. Conclusion: A flexible water excitation method was developed that shows robust, near complete fat suppression at 3T.
Contrast agents with a strong $R_1$ dispersion have been shown to be effective in generating target-specific contrast in MRI. The utilization of this $R_1$ field dependence requires the adaptation of a MRI scanner for fast field-cycling (FFC). Here, we present the first implementation and validation of FFC-MRI at a clinical field strength of 3 T. A field-cycling range of $pm$100 mT around the nominal $B_0$ field was realized by inserting an additional insert coil into an otherwise conventional MRI system. System validation was successfully performed with selected iron oxide magnetic nanoparticles and comparison to FFC-NMR relaxometry measurements. Furthermore, we show proof-of-principle $R_1$ dispersion imaging and demonstrate the capability of generating R1 dispersion contrast at high field with suppressed background signal. With the presented ready-to-use hardware setup it is possible to investigate MRI contrast agents with a strong R1 dispersion at a field strength of 3 T.
Purpose: Diffusion-weighted steady-state free precession (DW-SSFP) is shown to provide a means to probe non-Gaussian diffusion through manipulation of the flip angle. A framework is presented to define an effective b-value in DW-SSFP. Theory: The DW-SSFP signal is a summation of coherence pathways with different b-values. The relative contribution of each pathway is dictated by the flip angle. This leads to an apparent diffusion coefficient (ADC) estimate that depends on the flip angle in non-Gaussian diffusion regimes. By acquiring DW-SSFP data at multiple flip angles and modelling the variation in ADC for a given form of non-Gaussianity, the ADC can be estimated at a well-defined effective b-value. Methods: A gamma distribution is used to model non-Gaussian diffusion, embedded in the Buxton signal model for DW-SSFP. Monte-Carlo simulations of non-Gaussian diffusion in DW-SSFP and diffusion-weighted spin-echo (DW-SE) sequences are used to verify the proposed framework. Dependence of ADC on flip angle in DW-SSFP is verified with experimental measurements in a whole, human post-mortem brain. Results: Monte-Carlo simulations reveal excellent agreement between ADCs estimated with DW-SE and the proposed framework. Experimental ADC estimates vary as a function of flip angle over the corpus callosum of the postmortem brain, estimating the mean and standard deviation of the gamma distribution as $1.50cdot 10^{-4} mm^2/s$ and $2.10cdot 10^{-4} mm^2/s$. Conclusion: DW-SSFP can be used to investigate non-Gaussian diffusion by varying the flip angle. By fitting a model of non-Gaussian diffusion, the ADC in DW-SSFP can be estimated at an effective b-value, comparable to more conventional diffusion sequences.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا