Do you want to publish a course? Click here

Fetal whole-heart 4D imaging using motion-corrected multi-planar real-time MRI

78   0   0.0 ( 0 )
 Added by Joshua van Amerom
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Purpose: To develop a MRI acquisition and reconstruction framework for volumetric cine visualisation of the fetal heart and great vessels in the presence of maternal and fetal motion. Methods: Four-dimensional depiction was achieved using a highly-accelerated multi-planar real-time balanced steady state free precession acquisition combined with retrospective image-domain techniques for motion correction, cardiac synchronisation and outlier rejection. The framework was evaluated and optimised using a numerical phantom, and evaluated in a study of 20 mid- to late-gestational age human fetal subjects. Reconstructed cine volumes were evaluated by experienced cardiologists and compared with matched ultrasound. A preliminary assessment of flow-sensitive reconstruction using the velocity information encoded in the phase of dynamic images is included. Results: Reconstructed cine volumes could be visualised in any 2D plane without the need for highly-specific scan plane prescription prior to acquisition or for maternal breath hold to minimise motion. Reconstruction was fully automated aside from user-specified masks of the fetal heart and chest. The framework proved robust when applied to fetal data and simulations confirmed that spatial and temporal features could be reliably recovered. Expert evaluation suggested the reconstructed volumes can be used for comprehensive assessment of the fetal heart, either as an adjunct to ultrasound or in combination with other MRI techniques. Conclusion: The proposed methods show promise as a framework for motion-compensated 4D assessment of the fetal heart and great vessels.



rate research

Read More

In in-utero MRI, motion correction for fetal body and placenta poses a particular challenge due to the presence of local non-rigid transformations of organs caused by bending and stretching. The existing slice-to-volume registration (SVR) reconstruction methods are widely employed for motion correction of fetal brain that undergoes only rigid transformation. However, for reconstruction of fetal body and placenta, rigid registration cannot resolve the issue of misregistrations due to deformable motion, resulting in degradation of features in the reconstructed volume. We propose a Deformable SVR (DSVR), a novel approach for non-rigid motion correction of fetal MRI based on a hierarchical deformable SVR scheme to allow high resolution reconstruction of the fetal body and placenta. Additionally, a robust scheme for structure-based rejection of outliers minimises the impact of registration errors. The improved performance of DSVR in comparison to SVR and patch-to-volume registration (PVR) methods is quantitatively demonstrated in simulated experiments and 20 fetal MRI datasets from 28-31 weeks gestational age (GA) range with varying degree of motion corruption. In addition, we present qualitative evaluation of 100 fetal body cases from 20-34 weeks GA range.
The objectives were to develop a novel three-dimensional technology for imaging naturally occurring shear wave (SW) propagation, demonstrate feasibility on human volunteers and quantify SW velocity in different propagation directions. Imaging of natural SWs generated by valve closures has emerged to obtain a direct measurement of cardiac stiffness. Recently, natural SW velocity was assessed in two dimensions on parasternal long axis view under the assumption of a propagation direction along the septum. However, in this approach the source localization and the complex three-dimensional propagation wave path was neglected making the speed estimation unreliable. High volume rate transthoracic acquisitions of the human left ventricle (1100 volume/s) was performed with a 4D ultrafast echocardiographic scanner. Four-dimensional tissue velocity cineloops enabled visualization of aortic and mitral valve closure waves. Energy and time of flight mapping allowed propagation path visualization and source localization, respectively. Velocities were quantified along different directions. Aortic and mitral valve closure SW velocities were assessed for the three volunteers with low standard deviation. Anisotropic propagation was also found suggesting the necessity of using a three-dimensional imaging approach. Different velocities were estimated for the three directions for the aortic (3.4$pm$0.1 m/s, 3.5$pm$0.3 m/s, 5.4$pm$0.7 m/s) and the mitral (2.8$pm$0.5 m/s, 2.9$pm$0.3 m/s, 4.6$pm$0.7 m/s) valve SWs. 4D ultrafast ultrasound alleviates the limitations of 2D ultrafast ultrasound for cardiac SW imaging based on natural SW propagations and enables a comprehensive measurement of cardiac stiffness. This technique could provide stiffness mapping of the left ventricle.
Accurate and robust whole heart substructure segmentation is crucial in developing clinical applications, such as computer-aided diagnosis and computer-aided surgery. However, segmentation of different heart substructures is challenging because of inadequate edge or boundary information, the complexity of the background and texture, and the diversity in different substructures sizes and shapes. This article proposes a framework for multi-class whole heart segmentation employing non-rigid registration-based probabilistic atlas incorporating the Bayesian framework. We also propose a non-rigid registration pipeline utilizing a multi-resolution strategy for obtaining the highest attainable mutual information between the moving and fixed images. We further incorporate non-rigid registration into the expectation-maximization algorithm and implement different deep convolutional neural network-based encoder-decoder networks for ablation studies. All the extensive experiments are conducted utilizing the publicly available dataset for the whole heart segmentation containing 20 MRI and 20 CT cardiac images. The proposed approach exhibits an encouraging achievement, yielding a mean volume overlapping error of 14.5 % for CT scans exceeding the state-of-the-art results by a margin of 1.3 % in terms of the same metric. As the proposed approach provides better-results to delineate the different substructures of the heart, it can be a medical diagnostic aiding tool for helping experts with quicker and more accurate results.
Purpose: To implement, optimize and test fast interrupted steady-state (FISS) for natively fat-suppressed free-running 5D whole-heart MRI at 1.5T and 3T. Methods: FISS was implemented for fully self-gated free-running cardiac- and respiratory-motion-resolved radial imaging of the heart at 1.5T and 3T. Numerical simulations and phantom scans were performed to compare fat suppression characteristics and to determine parameter ranges (readouts per FISS module (NR) and repetition time (TR)) for effective fat suppression. Subsequently, free-running FISS data were collected in ten healthy volunteers. All acquisitions were compared with a continuous bSSFP version of the same sequence, and both fat suppression and scan times were analyzed. Results: Simulations demonstrate a variable width and location of suppression bands in FISS that was dependent on TR and NR. For a fat suppression bandwidth of 100Hz and NR below 8, simulations demonstrated that a TR between 2.2ms and 3.0ms is required at 1.5T while a range of 3.0ms to 3.5ms applies at 3T. Fat signal increases with NR. These findings were corroborated in phantom experiments. In volunteers, fat SNR was significantly decreased using FISS compared with bSSPF at both field strengths. After protocol optimization, high-resolution (1.1mm x 1.1mm x 1.1mm) 5D whole-heart free-running FISS can be performed with effective fat suppression in under 8 min at 1.5T and 3T at a modest scan time increase compared to bSSFP.Conclusion: An optimal FISS parameter range was determined enabling natively fat-suppressed 5D whole-heart free-running MRI with a single continuous scan at 1.5T and 3T, demonstrating potential for cardiac imaging and noncontrast angiography.
Fetal functional Magnetic Resonance Imaging (fMRI) has emerged as a powerful tool for investigating brain development in utero, holding promise for generating developmental disease biomarkers and supporting prenatal diagnosis. However, to date its clinical applications have been limited by unpredictable fetal and maternal motion during image acquisition. Even after spatial realigment, these cause spurious signal fluctuations confounding measures of functional connectivity and biasing statistical inference of relationships between connectivity and individual differences. As there is no ground truth for the brains functional structure, especially before birth, quantifying the quality of motion correction is challenging. In this paper, we propose evaluating the efficacy of different regression based methods for removing motion artifacts after realignment by assessing the residual relationship of functional connectivity with estimated motion, and with the distance between areas. Results demonstrate the sensitivity of our evaluations criteria to reveal the relative strengths and weaknesses among different artifact removal methods, and underscore the need for greater care when dealing with fetal motion.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا