Do you want to publish a course? Click here

Non-linear diffusion of cosmic rays escaping from supernova remnants - II. Hot ionized media

138   0   0.0 ( 0 )
 Added by Lara Nava
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the problem of the escape and transport of Cosmic-Rays (CR) from a source embedded in a fully ionised, hot phase of the interstellar medium (HIM). In particular, we model the CR escape and their propagation in the source vicinity taking into account excitation of Alfvenic turbulence by CR streaming and mechanisms damping the self-excited turbulence itself. Our estimates of escape radii and times result in large values (100 pc, $2times10^5$ yr) for particle energies $lesssim20$ GeV and smaller values for particles with increasing energies (35 pc and 14 kyr at 1 TeV). These escape times and radii, when used as initial conditions for the CR propagation outside the source, result in relevant suppression of the diffusion coefficient (by a factor 5-10) on time-scales comparable with their (energy dependent) escape time-scale. The damping mechanisms are fast enough that even on shorter time scales the Alfvenic turbulence is efficiently damped, and the ratio between random and ordered component of the magnetic field is $delta B/B_0ll 1$, justifying the use of quasi-linear theory. In spite of the suppressed diffusion coefficient, and then the increased residence time in the vicinity (<200 pc) of their source, the grammage accumulated by CRs after their escape is found to be negligible (at all energies) as compared to the one accumulated while diffusing in the whole Galaxy, due to the low density of the HIM.



rate research

Read More

181 - C.D. Dermer , G. Powale 2012
Context: Cosmic rays are thought to be accelerated at supernova remnant (SNR) shocks, but conclusive evidence is lacking. Aims: New data from ground-based gamma-ray telescopes and the Large Area Telescope on the Fermi Gamma-ray Space Telescope are used to test this hypothesis. A simple model for gamma-ray production efficiency is compared with measured gamma-ray luminosities of SNRs, and the GeV to TeV fluxes ratios of SNRs are examined for correlations with SNR ages. Methods: The supernova explosion is modeled as an expanding spherical shell of material that sweeps up matter from the surrounding interstellar medium (ISM). The accumulated kinetic energy of the shell, which provides the energy available for nonthermal particle acceleration, changes when matter is swept up from the ISM and the SNR shell decelerates. A fraction of this energy is assumed to be converted into the energy of cosmic-ray electrons or protons. Three different particle radiation processes---nuclear pion-production interactions, nonthermal electron bremsstrahlung, and Compton scattering---are considered. Results: The efficiencies for gamma-ray production by these three processes are compared with gamma-ray luminosities of SNRs. Our results suggest that SNRs become less gamma-ray luminous at >~ 10^4 yr, and are consistent with the hypothesis that supernova remnants accelerate cosmic rays with an efficiency of ~10% for the dissipation of kinetic energy into nonthermal cosmic rays. Weak evidence for an increasing GeV to TeV flux ratio with SNR age is found.
133 - E.G. Berezhko 2014
We analyze the results of recent measurements of Galactic cosmic ray (GCRs) energy spectra and the spectra of nonthermal emission from supernova remnants (SNRs) in order to determine their consistency with GCR origin in SNRs. It is shown that the measured primary and secondary CR nuclei energy spectra as well as the observed positron-to-electron ratio are consistent with the origin of GCRs up to the energy 10^17 eV in SNRs. Existing SNR emission data provide evidences for efficient CR production in SNRs accompanied by significant magnetic field amplification. In some cases the nature of the detected gamma-ray emission is difficult to determine because key SNR parameters are not known or poorly constrained.
112 - S. Recchia , D. Galli , L. Nava 2021
We investigate the damping of Alfven waves generated by the cosmic ray resonant streaming instability in the context of the cosmic ray escape and propagation in the proximity of supernova remnants. We consider ion-neutral damping, turbulent damping and non linear Landau damping in the warm ionized and warm neutral phases of the interstellar medium. For the ion-neutral damping, up-to-date damping coefficients are used. We investigate in particular whether the self-confinement of cosmic rays nearby sources can appreciably affect the grammage. We show that the ion-neutral damping and the turbulent damping effectively limit the residence time of cosmic rays in the source proximity, so that the grammage accumulated near sources is found to be negligible. Contrary to previous results, this also happens in the most extreme scenario where ion-neutral damping is less effective, namely in a medium with only neutral helium and fully ionized hydrogen. Therefore, the standard picture, in which CR secondaries are produced during the whole time spent by cosmic rays throughout the Galactic disk, need not to be deeply revisited.
It is widely believe that galactic cosmic rays are originated in supernova remnants (SNRs) where they are accelerated by diffusive shock acceleration process at supernova blast waves driven by expanding SNRs. In recent theoretical developments of the diffusive shock acceleration theory in SNRs, protons are expected to accelerate in SNRs at least up to the knee energy. If SNRs are true generator of cosmic rays, they should accelerate not only protons but also heavier nuclei with right proportion and the maximum energy of heavier nuclei should be atomic mass (Z) times that of protons. In this work we investigate the implications of acceleration of heavier nuclei in SNRs on energetic gamma rays those are produced in hadronic interaction of cosmic rays with ambient matter. Our findings suggest that the energy conversion efficiency has to be nearly double for the mixed cosmic ray composition instead of pure protons to explain the observation and secondly the gamma ray flux above few tens of TeV would be significantly higher if cosmic rays particles can attain energies Z times of the knee energy in lieu of 200 TeV, as suggested earlier for non-amplified magnetic fields. The two stated maximum energy paradigm will be discriminated in future by the upcoming gamma ray experiments like Cherenkov Telescope array (CTA).
279 - Jacco Vink 2012
The origin of cosmic rays holds still many mysteries hundred years after they were first discovered. Supernova remnants have for long been the most likely sources of Galactic cosmic rays. I discuss here some recent evidence that suggests that supernova remnants can indeed efficiently accelerate cosmic rays. For this conference devoted to the Astronomical Institute Utrecht I put the emphasis on work that was done in my group, but placed in a broader context: efficient cosmic-ray acceleration and the im- plications for cosmic-ray escape, synchrotron radiation and the evidence for magnetic- field amplification, potential X-ray synchrotron emission from cosmic-ray precursors, and I conclude with the implications of cosmic-ray escape for a Type Ia remnant like Tycho and a core-collapse remnant like Cas A.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا