Do you want to publish a course? Click here

A solid state single photon source with Fourier Transform limited lines at room temperature

106   0   0.0 ( 0 )
 Added by Andreas Dietrich
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Solid state single photon sources with Fourier Transform (FT) limited lines are among the most crucial constituents of photonic quantum technologies and have been accordingly the focus of intensive research over the last several decades. However, so far, solid state systems have only exhibited FT limited lines at cryogenic temperatures due to strong interactions with the thermal bath of lattice phonons. In this work, we report a solid state source that exhibits FT limited lines measured in photo luminescence excitation (sub 100 MHz linewidths) from 3K-300K. The studied source is a color center in the two-dimensional hexagonal boron nitride and we propose that the centers decoupling from phonons is a fundamental consequence of materials low dimensionality. While the centers luminescence lines exhibit spectral diffusion, we identify the likely source of the dffusion and propose to mitigate it via dynamic spectral tuning. The discovery of FT-limited lines at room temperature, which once the spectral diffusion is controlled, will also yield FT-limited emission. Our work motivates a significant advance towards room temperature photonic quantum technologies and a new research direction in the remarkable fundamental properties of two-dimensional materials.



rate research

Read More

Two dimensional systems offer a unique platform to study light matter interaction at the nanoscale. In this work we report on robust quantum emitters fabricated by thermal oxidation of tungsten disulphide multilayers. The emitters show robust, optically stable, linearly polarized luminescence at room temperature, can be modeled using a three level system, and exhibit moderate bunching. Overall, our results provide important insights into understanding of defect formation and quantum emitter activation in 2D materials.
We report a 2mu m ultrafast solid-state Tm:Lu2O3 laser, mode-locked by single-layer graphene, generating transform-limited~410fs pulses, with a spectral width~11.1nm at 2067nm. The maximum average output power is 270mW, at a pulse repetition frequency of 110MHz. This is a convenient high-power transform-limited laser at 2mu m for various applications, such as laser surgery and material processing.
Emitters of indistinguishable single photons are crucial for the growing field of quantum technologies. To realize scalability and increase the complexity of quantum optics technologies, multiple independent yet identical single photon emitters are also required. However typical solid-state single photon sources are inherently dissimilar, necessitating the use of electrical feedback or optical cavities to improve spectral overlap between distinct emitters. Here, we demonstrate bright silicon-vacancy (SiV-) centres in low-strain bulk diamond which intrinsically show spectral overlap of up to 91% and near transform-limited excitation linewidths. Our results have impact upon the application of single photon sources for quantum optics and cryptography, and the production of next generation fluorophores for bio-imaging.
Single-layer transition metal dichalcogenides are at the center of an ever increasing research effort both in terms of fundamental physics and applications. Exciton-phonon coupling plays a key role in determining the (opto)electronic properties of these materials. However, the exciton-phonon coupling strength has not been measured at room temperature. Here, we develop two-dimensional micro-spectroscopy to determine exciton-phonon coupling of single-layer MoSe2. We detect beating signals as a function of waiting time T, induced by the coupling between the A exciton and the A1 optical phonon. Analysis of two-dimensional beating maps combined with simulations provides the exciton-phonon coupling. The Huang-Rhys factor of ~1 is larger than in most other inorganic semiconductor nanostructures. Our technique offers a unique tool to measure exciton-phonon coupling also in other heterogeneous semiconducting systems with a spatial resolution ~260 nm, and will provide design-relevant parameters for the development of optoelectronic devices.
Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for $Sb_2Te_3$, $Sb_2Se_3$, $Bi_2Te_3$ and $Bi_2Se_3$ crystals. Our calculations predict that $Sb_2Te_3$, $Bi_2Te_3$ and $Bi_2Se_3$ are topological insulators, while $Sb_2Se_3$ is not. In particular, $Bi_2Se_3$ has a topologically non-trivial energy gap of $0.3 eV$, suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the $Gamma$ point.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا