No Arabic abstract
In order to enhance accuracy of astrophysical estimates obtained on Adaptive-optics (AO) images, such as photometry and astrometry, we investigate a new concept to constrain the Point Spread Function (PSF) model called PSF Reconstruction and Identification for Multi-sources characterization Enhancement (PRIME), that handles jointly the science image and the AO control loop data. We present in this paper the concept of PRIME and validate it on Keck II telescope NIRC2 images. We show that by calibrating the PSF model over the scientific image, PSF reconstruction achieves 1% and 3 mas of accuracy on respectively the Strehl-ratio and the PSF full width at half maximum. We show on NIRC2 binary images that PRIME is sufficiently robust to noise to retain photometry and astrometry precision below 0.005 mag and 100$mu$as on a $m_H=$ 14 mag object. Finally, we also validate that PRIME performs a PSF calibration on the triple system Gl569BAB which provides a separation of 66.73$pm 1.02$ and a differential photometry of 0.538$pm 0.048$, compared to the reference values obtained with the extracted PSF which are 66.76 mas $pm$ 0.94 and 0.532 mag $pm$ 0.041.
The Keck Planet Imager and Characterizer (KPIC) is an upgrade to the Keck II adaptive optics system enabling high contrast imaging and high-resolution spectroscopic characterization of giant exoplanets in the mid-infrared (2-5 microns). The KPIC instrument will be developed in phases. Phase I entails the installation of an infrared pyramid wavefront sensor (PyWFS) based on a fast, low-noise SAPHIRA IR-APD array. The ultra-sensitive infrared PyWFS will enable high contrast studies of infant exoplanets around cool, red, and/or obscured targets in star forming regions. In addition, the light downstream of the PyWFS will be coupled into an array of single-mode fibers with the aid of an active fiber injection unit (FIU). In turn, these fibers route light to Kecks high-resolution infrared spectrograph NIRSPEC, so that high dispersion coronagraphy (HDC) can be implemented for the first time. HDC optimally pairs high contrast imaging and high-resolution spectroscopy allowing detailed characterization of exoplanet atmospheres, including molecular composition, spin measurements, and Doppler imaging. Here we provide an overview of the instrument, its science scope, and report on recent results from on-sky commissioning of Phase I. The instrument design and techniques developed will be key for more advanced instrument concepts needed for the extremely large telescopes of the future.
In this work, we present a novel centroiding method based on Fourier space Phase Fitting(FPF) for Point Spread Function(PSF) reconstruction. We generate two sets of simulations to test our method. The first set is generated by GalSim with elliptical Moffat profile and strong anisotropy which shifts the center of the PSF. The second set of simulation is drawn from CFHT i band stellar imaging data. We find non-negligible anisotropy from CFHT stellar images, which leads to $sim$0.08 scatter in unit of pixels using polynomial fitting method Vakili and Hogg (2016). And we apply FPF method to estimate the centroid in real space, this scatter reduces to $sim$0.04 in SNR=200 CFHT like sample. In low SNR (50 and 100) CFHT like samples, the background noise dominates the shifting of the centroid, therefore the scatter estimated from different methods are similar. We compare polynomial fitting and FPF using GalSim simulation with optical anisotropy. We find that in all SNR$sim$50, 100 and 200) samples, FPF performs better than polynomial fitting by a factor of $sim$3. In general, we suggest that in real observations there are anisotropy which shift the centroid, and FPF method is a better way to accurately locate it.
The point spread function reconstruction (PSF-R) capability is a deliverable of the MICADO@ESO-ELT project. The PSF-R team works on the implementation of the instrument software devoted to reconstruct the point spread function (PSF), independently of the science data, using adaptive optics (AO) telemetry data, both for Single Conjugate (SCAO) and Multi-Conjugate Adaptive Optics (MCAO) mode of the MICADO camera and spectrograph. The PSF-R application will provide reconstructed PSFs through an archive querying system to restore the telemetry data synchronous to each science frame that MICADO will generate. Eventually, the PSF-R software will produce the output according to user specifications. The PSF-R service will support the state-of-the-art scientific analysis of the MICADO imaging and spectroscopic data.
The InfraRed Imaging Spectrograph (IRIS) is a first-light instrument for the Thirty Meter Telescope (TMT) that will be used to sample the corrected adaptive optics field by the Narrow-Field Infrared Adaptive Optics System (NFIRAOS) with a near-infrared (0.8 - 2.4 $mu$m) imaging camera and integral field spectrograph. To better understand IRIS science specifications we use the IRIS data simulator to characterize relative photometric precision and accuracy across the IRIS imaging camera 34x34 field of view. Because the Point Spread Function (PSF) varies due to the effects of anisoplanatism, we use the Anisoplanatic and Instrumental Reconstruction of Off-axis PSFs for AO (AIROPA) software package to conduct photometric measurements on simulated frames using PSF-fitting as the PSF varies in single-source, binary, and crowded field use cases. We report photometric performance of the imaging camera as a function of the instrumental noise properties including dark current and read noise. Using the same methods, we conduct comparisons of photometric performance with reconstructed PSFs, in order to test the veracity of the current PSF-Reconstruction algorithms for IRIS/TMT.
We report on the design and performance of the Keck Cosmic Web Imager (KCWI), a general purpose optical integral field spectrograph that has been installed at the Nasmyth port of the 10 m Keck II telescope on Mauna Kea, HI. The novel design provides blue-optimized seeing-limited imaging from 350-560 nm with configurable spectral resolution from 1000 - 20000 in a field of view up to 20x33. Selectable volume phase holographic (VPH) gratings and high performance dielectric, multilayer silver and enhanced aluminum coatings provide end-to-end peak efficiency in excess of 45% while accommodating the future addition of a red channel that will extend wavelength coverage to 1 micron. KCWI takes full advantage of the excellent seeing and dark sky above Mauna Kea with an available nod-and-shuffle observing mode. The instrument is optimized for observations of faint, diffuse objects such as the intergalactic medium or cosmic web. In this paper, a detailed description of the instrument design is provided with measured performance results from the laboratory test program and ten nights of on-sky commissioning during the spring of 2017. The KCWI team is lead by Caltech and JPL (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (observatory interfaces).