No Arabic abstract
This study investigates the changes of magnetic ordering temperature via nano- and mesoscale structural features in an iron arsenide. Although magnetic ground states in quantum materials can be theoretically predicted from known crystal structures and chemical compositions, the ordering temperature is harder to pinpoint due to such local lattice variations. In this work we find surprisingly that a locally disordered material can exhibit a significantly larger Neel temperature (TN) than an ordered material of precisely the same chemical stoichiometry. Here, a EuFe2As2 crystal, which is a 122 parent of iron arsenide superconductors, is found through synthesis to have ordering below TN = 195 K (for the disordered crystal) or TN = 175 K (for the ordered crystal). In the higher TN crystals, there are shorter planar Fe-Fe bonds [2.7692(2) A vs. 2.7745(3) A], a randomized in-plane defect structure, and diffuse scattering along the [00L] crystallographic direction that manifests as a rather broad specific heat peak. For the lower TN crystals, the a-lattice parameter is larger and the in-plane microscopic structure shows defect ordering along the antiphase boundaries, giving a larger TN and a higher superconducting temperature (Tc) upon the application of pressure. First principles calculations find a strong interaction between c-axis strain and interlayer magnetic coupling, but little impact of planar strain on the magnetic order. Neutron single-crystal diffraction shows that the low-temperature magnetic phase transition due to localized Eu moments is not lattice or disorder sensitive, unlike the higher-temperature Fe sublattice ordering. This study demonstrates a higher magnetic ordering point arising from local disorder in 122.
We have used spin-polarized neutron reflectometry to investigate the magnetization profile of superlattices composed of ferromagnetic Gd and superconducting Nb layers. We have observed a partial suppression of ferromagnetic (F) order of Gd layers in [Gd($d_F$)/Nb(25nm)]$_{12}$ superlattices below the superconducting (S) transition of the Nb layers. The amplitude of the suppression decreases with increasing $d_F$. By analyzing the neutron spin asymmetry we conclude that the observed effect has an electromagnetic origin - the proximity-coupled S layers screen out the external magnetic field and thus suppress the F response of the Gd layers inside the structure. Our investigation demonstrates the considerable influence of electromagnetic effects on the magnetic properties of S/F systems.
We investigate the chemical substitution of group 5 into BaFe2As2 (122) iron arsenide, in the effort to understand why Fe-site hole doping of this compound (e.g., using group 5 or 6) does not yield bulk superconductivity. We find an increase in c-lattice parameter of the BaFe2As2 with the substitution of V, Nb, or Ta; the reduction in c predicts the lack of bulk superconductivity [1] that is confirmed here through transport and magnetization results. However, our spectroscopy measurements find a coexistence of antiferromagnetic and local superconducting nanoscale regions in V-122, observed for the first time in a transition-metal hole-doped iron arsenide. In BaFe2As2, there is a complex connection between local parameters such as composition and lattice strain, average lattice details, and the emergence of bulk quantum states such as superconductivity and magnetism. [1] L. M. N. Konzen, and A. S. Sefat, J. Phys.: Condens. Matter 29 (2017), 083001.
Non-trivial topology and unconventional pairing are two central guiding principles in the contemporary search for and analysis of superconducting materials and heterostructure compounds. Previously, a topological superconductor has been predominantly conceived to result from a topologically non-trivial band subject to intrinsic or external superconducting proximity effect. Here, we propose a new class of topological superconductors which are uniquely induced by unconventional pairing. They exhibit a boundary-obstructed higher-order topological character and, depending on their dimensionality, feature unprecedently robust Majorana bound states or hinge modes protected by chiral symmetry. We predict the 112-family of iron pnictides, such as Ca$_{1-x}$La$_x$FeAs$_2$, to be a highly suited material candidate for our proposal, which can be tested by edge spectroscopy. Because of the boundary-obstruction, the topologically non-trivial feature of the 112 pnictides does not reveal itself for a bulk-only torus band analysis without boundaries, and as such had evaded previous investigations. Our proposal not only opens a new arena for highly stable Majorana modes in high-temperature superconductors, but also provides the smoking gun evidence for extended s-wave order in the iron pnictides.
Using a local real-space microscopy probe, we discover evidence of nanoscale interlayer defects along the c-crystallographic direction in BaFe2As2 (122) based iron-arsenide superconductors. We find ordered 122 atomic arrangements within the ab-plane, and within regions of ~10 to 20 nm size perpendicular to this plane. While the FeAs substructure is very rigid, Ba ions are relatively weakly bound and can be displaced from the 122, forming stacking faults resulting in the physical separation of the 122 between adjacent ordered domains. The evidence for interlayer defects between the FeAs superconducting planes gives perspective on the minimal connection between interlayer chemical disorder and high-temperature superconductivity. In particular, the Cooper pairs may be finding a way around such localized interlayer defects through a percolative path of the ordered layered 122 lattice that may not affect Tc.
A weak superconducting proximity effect in the vicinity of the topological transition of a quantum anomalous Hall system has been proposed as a venue to realize a topological superconductor (TSC) with chiral Majorana edge modes (CMEMs). A recent experiment [Science 357, 294 (2017)] claimed to have observed such CMEMs in the form of a half-integer quantized conductance plateau in the two-terminal transport measurement of a quantum anomalous Hall-superconductor junction. Although the presence of a superconducting proximity effect generically splits the quantum Hall transition into two phase transitions with a gapped TSC in between, in this Rapid Communication we propose that a nearly flat conductance plateau, similar to that expected from CMEMs, can also arise from the percolation of quantum Hall edges well before the onset of the TSC or at temperatures much above the TSC gap. Our Rapid Communication, therefore, suggests that, in order to confirm the TSC, it is necessary to supplement the observation of the half-quantized conductance plateau with a hard superconducting gap (which is unlikely for a disordered system) from the conductance measurements or the heat transport measurement of the transport gap. Alternatively, the half-quantized thermal conductance would also serve as a smoking-gun signature of the TSC.