Do you want to publish a course? Click here

Disorder-induced half-integer quantized conductance plateau in quantum anomalous Hall insulator-superconductor structures

279   0   0.0 ( 0 )
 Added by Yingyi Huang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A weak superconducting proximity effect in the vicinity of the topological transition of a quantum anomalous Hall system has been proposed as a venue to realize a topological superconductor (TSC) with chiral Majorana edge modes (CMEMs). A recent experiment [Science 357, 294 (2017)] claimed to have observed such CMEMs in the form of a half-integer quantized conductance plateau in the two-terminal transport measurement of a quantum anomalous Hall-superconductor junction. Although the presence of a superconducting proximity effect generically splits the quantum Hall transition into two phase transitions with a gapped TSC in between, in this Rapid Communication we propose that a nearly flat conductance plateau, similar to that expected from CMEMs, can also arise from the percolation of quantum Hall edges well before the onset of the TSC or at temperatures much above the TSC gap. Our Rapid Communication, therefore, suggests that, in order to confirm the TSC, it is necessary to supplement the observation of the half-quantized conductance plateau with a hard superconducting gap (which is unlikely for a disordered system) from the conductance measurements or the heat transport measurement of the transport gap. Alternatively, the half-quantized thermal conductance would also serve as a smoking-gun signature of the TSC.

rate research

Read More

A quantum anomalous Hall (QAH) insulator coupled to an s-wave superconductor is predicted to harbor a topological superconducting phase, the elementary excitations of which (i.e. Majorana fermions) can form topological qubits upon non-Abelian braiding operations. A recent transport experiment interprets the half-quantized two-terminal conductance plateau as the presence of chiral Majorana fermions in a millimeter-size QAH-Nb hybrid structure. However, there are concerns about this interpretation because non-Majorana mechanisms can also generate similar signatures, especially in a disordered QAH system. Here, we fabricated QAH-Nb hybrid structures and studied the QAH-Nb contact transparency and its effect on the corresponding two-terminal conductance. When the QAH film is tuned to the metallic regime by electric gating, we observed a sharp zero-bias enhancement in the differential conductance, up to 80% at zero magnetic field. This large enhancement suggests high probability of Andreev reflection and transparent interface between the magnetic topological insulator (TI) and Nb layers. When the magnetic TI film is in the QAH state with well-aligned magnetization, we found that the two-terminal conductance is always half-quantized. Our experiment provides a comprehensive understanding of the superconducting proximity effect observed in QAH-superconductor hybrid structures and shows that the half-quantized conductance plateau is unlikely to be induced by chiral Majorana fermions.
After the recognition of the possibility to implement Majorana fermions using the building blocks of solid-state matters, the detection of this peculiar particle has been an intense focus of research. Here we experimentally demonstrate a collection of Majorana fermions living in a one-dimensional transport channel at the boundary of a superconducting quantum anomalous Hall insulator thin film. A series of topological phase changes are controlled by the reversal of the magnetization, where a half-integer quantized conductance plateau (0.5e2/h) is observed as a clear signature of the Majorana phase. This transport signature can be well repeated during many magnetic reversal sweeps, and can be tracked at different temperatures, providing a promising evidence of the chiral Majorana edge modes in the system.
Majorana zero-modes (MZMs) are spatially-localized zero-energy fractional quasiparticles with non-Abelian braiding statistics that hold a great promise for topological quantum computing. Due to its particle-antiparticle equivalence, an MZM exhibits robust resonant Andreev reflection and 2e2/h quantized conductance at low temperature. By utilizing variable-tunnel-coupled scanning tunneling spectroscopy, we study tunneling conductance of vortex bound states on FeTe0.55Se0.45 superconductors. We report observations of conductance plateaus as a function of tunnel coupling for zero-energy vortex bound states with values close to or even reaching the 2e2/h quantum conductance. In contrast, no such plateau behaviors were observed on either finite energy Caroli-de Genne-Matricon bound states or in the continuum of electronic states outside the superconducting gap. This unique behavior of the zero-mode conductance reaching a plateau strongly supports the existence of MZMs in this iron-based superconductor, which serves as a promising single-material platform for Majorana braiding at a relatively high temperature.
In this communication, we numerically studied disordered quantum transport in a quantum anomalous Hall insulator-superconductor junction based on the effective edge model approach. In particular, we focus on the parameter regime with the free mean path due to elastic scattering much smaller than the sample size and discuss disordered transport behaviors in the presence of different numbers of chiral edge modes, as well as non-chiral metallic modes. Our numerical results demonstrate that the presence of multiple chiral edge modes or non-chiral metallic modes will lead to a strong Andreev conversion, giving rise to half-electron half-hole transmission through the junction structure, in sharp contrast to the suppression of Andreev conversion in the single chiral edge mode case. Our results suggest the importance of additional transport modes in the quantum anomalous Hall insulator-superconductor junction and will guide the future transport measurements.
Topological spin configurations in proximity to a superconductor have recently attracted great interest due to the potential application of the former in spintronics and also as another platform for realizing non-trivial topological superconductors. Their application in these areas requires precise knowledge of the existing exchange fields and/or the stray-fields which are therefore essential for the study of these systems. Here, we determine the effective stray-field and the Meissner currents in a Superconductor/Ferromagnet/Superconductor (S/F/S) junction produced by various nonhomogenous magnetic textures in the F. The inhomogeneity arises either due to a periodic structure with flat domain walls (DW) or is caused by an isolated chiral magnetic skyrmion (Sk). We consider both Bloch- and N{e}el-type Sk and also analyze in detail the periodic structures of different types of DWs-- that is Bloch-type DW (BDW) and N{e}el-type DW (NDW) of finite width with in- and out-of-plane magnetization vector. The spatial dependence of the fields and Meissner currents are shown to be qualitatively different for the case of Bloch- and N{e}el-type magnetic textures. While the spatial distributions in the upper and lower S are identical for Bloch-type Sk and DWs they are asymmetric for the case of N{e}el-type magnetic textures. The depairing factor, which determines the critical temperature and which is related to vector potential of the stray-field, can have its maximum at the center of a magnetic domain but also, as we show, above the DW. For Sks the maximum is located at a finite distance within the Sk radius. Based on this, we study the nucleation of superconductivity in the presence of DWs. Because of the asymmetry for N{e}el-type structures, the critical temperature in the upper and lower S is expected to be different. The obtained results can also be applied to S/F bilayers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا