No Arabic abstract
The development of van der Waals (vdW) crystals and their heterostructures has created a fascinating platform for exploring optoelectronic properties in the two-dimensional (2D) limit. With the recent discovery of 2D magnets, the control of the spin degree of freedom can be integrated to realize 2D spin-optoelectronics with spontaneous time-reversal symmetry breaking. Here, we report spin photovoltaic effects in vdW heterostructures of atomically thin magnet chromium triiodide (CrI3) sandwiched by graphene contacts. In the absence of a magnetic field, the photocurrent displays a distinct dependence on light helicity, which can be tuned by varying the magnetic states and photon energy. Circular polarization-resolved absorption measurements reveal that these observations originate from magnetic-order-coupled and thus helicity-dependent charge-transfer exciton states. The photocurrent displays multiple plateaus as the magnetic field is swept, which are associated with different spin configurations enabled by the layered antiferromagnetism and spin-flip transitions in CrI3. Remarkably, giant photo-magnetocurrent is observed, which tends to infinity for a small applied bias. Our results pave the way to explore emergent photo-spintronics by engineering magnetic vdW heterostructures.
Van der Waals materials can be easily combined in lateral and vertical heterostructures, providing an outstanding platform to engineer elusive quantum states of matter. However, a critical problem in material science is to establish tangible links between real materials properties and terms that can be cooked up on the model Hamiltonian level to realize different exotic phenomena. Our review aims to do precisely this: we first discuss, in a way accessible to the materials community, what ingredients need to be included in the hybrid quantum materials recipe, and second, we elaborate on the specific materials that would possess the necessary qualities. We will review the well-established procedures for realizing 2D topological superconductors, quantum spin-liquids and flat bands systems, emphasizing the connection between well-known model Hamiltonians and real compounds. We will use the most recent experimental results to illustrate the power of the designer approach.
Discoveries of interfacial topological Hall effect (THE) provide an ideal platform for exploring physics arising from the interplay between topology and magnetism. The interfacial topological Hall effect is closely related to the Dzyaloshinskii-Moriya interaction (DMI) at interface and topological spin textures. However, it is difficult to achieve a sizable THE in heterostructures due to the stringent constraints on the constituents of THE heterostructures such as strong spin-orbit coupling (SOC). Here we report the observation of a giant THE signal of 1.39 $muOmegacdot$cm in the van der Waals heterostructures of CrTe2/Bi2Te3 fabricated by molecular beam epitaxy, a prototype of two-dimensional (2D) ferromagnet (FM)/topological insulator (TI). This large magnitude of THE is attributed to an optimized combination of 2D ferromagnetism in CrTe2, strong SOC in Bi2Te3, and an atomically sharp interface. Our work reveals CrTe2/Bi2Te3 as a convenient platform for achieving large interfacial THE in hybrid systems, which could be utilized to develop quantum science and high-density information storage.
Magnetic proximity effects are crucial ingredients for engineering spintronic, superconducting, and topological phenomena in heterostructures. Such effects are highly sensitive to the interfacial electronic properties, such as electron wave function overlap and band alignment. The recent emergence of van der Waals (vdW) magnets enables the possibility of tuning proximity effects via designing heterostructures with atomically clean interfaces. In particular, atomically thin CrI3 exhibits layered antiferromagnetism, where adjacent ferromagnetic monolayers are antiferromagnetically coupled. Exploiting this magnetic structure, we uncovered a layer-resolved magnetic proximity effect in heterostructures formed by monolayer WSe2 and bi/trilayer CrI3. By controlling the individual layer magnetization in CrI3 with a magnetic field, we found that the spin-dependent charge transfer between WSe2 and CrI3 is dominated by the interfacial CrI3 layer, while the proximity exchange field is highly sensitive to the layered magnetic structure as a whole. These properties enabled us to use monolayer WSe2 as a spatially sensitive magnetic sensor to map out layered antiferromagnetic domain structures at zero magnetic field as well as antiferromagnetic/ferromagnetic domains near the spin-flip transition in bilayer CrI3. Our work reveals a new way to control proximity effects and probe interfacial magnetic order via vdW engineering.
The integration of magnetic material with semiconductors has been fertile ground for fundamental science as well as of great practical interest toward the seamless integration of information processing and storage. Here we create van der Waals heterostructures formed by an ultrathin ferromagnetic semiconductor CrI3 and a monolayer of WSe2. We observe unprecedented control of the spin and valley pseudospin in WSe2, where we detect a large magnetic exchange field of nearly 13 T and rapid switching of the WSe2 valley splitting and polarization via flipping of the CrI3 magnetization. The WSe2 photoluminescence intensity strongly depends on the relative alignment between photo-excited spins in WSe2 and the CrI3 magnetization, due to ultrafast spin-dependent charge hopping across the heterostructure interface. The photoluminescence detection of valley pseudospin provides a simple and sensitive method to probe the intriguing domain dynamics in the ultrathin magnet, as well as the rich spin interactions within the heterostructure.
In this article we review recent work on van der Waals (vdW) systems in which at least one of the components has strong spin-orbit coupling. We focus on a selection of vdW heterostructures to exemplify the type of interesting electronic properties that can arise in these systems. We first present a general effective model to describe the low energy electronic degrees of freedom in these systems. We apply the model to study the case of (vdW) systems formed by a graphene sheet and a topological insulator. We discuss the electronic transport properties of such systems and show how they exhibit much stronger spin-dependent transport effects than isolated topological insulators. We then consider vdW systems in which the layer with strong spin-orbit coupling is a monolayer transition metal dichalcogenide (TMD) and briefly discuss graphene-TMD systems. In the second part of the article we discuss the case in which the vdW system includes a superconducting layer in addition to the layer with strong spin-orbit coupling. We show in detail how these systems can be designed to realize odd-frequency superconducting pair correlations. Finally, we discuss twisted graphene-NbSe2 bilayer systems as an example in which the strength of the proximity-induced superconducting pairing in the normal layer, and its Ising character, can be tuned via the relative twist angle between the two layers forming the heterostructure.