Do you want to publish a course? Click here

Finite Sample Inference for the Maximum Score Estimand

67   0   0.0 ( 0 )
 Added by Takuya Ura
 Publication date 2019
  fields Economy
and research's language is English




Ask ChatGPT about the research

We provide a finite sample inference method for the structural parameters of a semiparametric binary response model under a conditional median restriction originally studied by Manski (1975, 1985). Our inference method is valid for any sample size and irrespective of whether the structural parameters are point identified or partially identified, for example due to the lack of a continuously distributed covariate with large support. Our inference approach exploits distributional properties of observable outcomes conditional on the observed sequence of exogenous variables. Moment inequalities conditional on this size n sequence of exogenous covariates are constructed, and the test statistic is a monotone function of violations of sample moment inequalities. The critical value used for inference is provided by the appropriate quantile of a known function of n independent Rademacher random variables. We investigate power properties of the underlying test and provide simulation studies to support the theoretical findings.



rate research

Read More

60 - Haitian Xie 2020
The paper studies the problem of auction design in a setting where the auctioneer accesses the knowledge of the valuation distribution only through statistical samples. A new framework is established that combines the statistical decision theory with mechanism design. Two optimality criteria, maxmin, and equivariance, are studied along with their implications on the form of auctions. The simplest form of the equivariant auction is the average bid auction, which set individual reservation prices proportional to the average of other bids and historical samples. This form of auction can be motivated by the Gamma distribution, and it sheds new light on the estimation of the optimal price, an irregular parameter. Theoretical results show that it is often possible to use the regular parameter population mean to approximate the optimal price. An adaptive average bid estimator is developed under this idea, and it has the same asymptotic properties as the empirical Myerson estimator. The new proposed estimator has a significantly better performance in terms of value at risk and expected shortfall when the sample size is small.
We develop a new approach for estimating average treatment effects in the observational studies with unobserved group-level heterogeneity. A common approach in such settings is to use linear fixed effect specifications estimated by least squares regression. Such methods severely limit the extent of the heterogeneity between groups by making the restrictive assumption that linearly adjusting for differences between groups in average covariate values addresses all concerns with cross-group comparisons. We start by making two observations. First we note that the fixed effect method in effect adjusts only for differences between groups by adjusting for the average of covariate values and average treatment. Second, we note that weighting by the inverse of the propensity score would remove biases for comparisons between treated and control units under the fixed effect set up. We then develop three generalizations of the fixed effect approach based on these two observations. First, we suggest more general, nonlinear, adjustments for the average covariate values. Second, we suggest robustifying the estimators by using propensity score weighting. Third, we motivate and develop implementations for adjustments that also adjust for group characteristics beyond the average covariate values.
72 - Michael Pollmann 2020
I propose a framework, estimators, and inference procedures for the analysis of causal effects in a setting with spatial treatments. Many events and policies (treatments), such as opening of businesses, building of hospitals, and sources of pollution, occur at specific spatial locations, with researchers interested in their effects on nearby individuals or businesses (outcome units). However, the existing treatment effects literature primarily considers treatments that could be assigned directly at the level of the outcome units, potentially with spillover effects. I approach the spatial treatment setting from a similar experimental perspective: What ideal experiment would we design to estimate the causal effects of spatial treatments? This perspective motivates a comparison between individuals near realized treatment locations and individuals near unrealized candidate locations, which is distinct from current empirical practice. Furthermore, I show how to find such candidate locations and apply the proposed methods with observational data. I apply the proposed methods to study the causal effects of grocery stores on foot traffic to nearby businesses during COVID-19 lockdowns.
We propose the double robust Lagrange multiplier (DRLM) statistic for testing hypotheses specified on the pseudo-true value of the structural parameters in the generalized method of moments. The pseudo-true value is defined as the minimizer of the population continuous updating objective function and equals the true value of the structural parameter in the absence of misspecification. ocite{hhy96} The (bounding) chi-squared limiting distribution of the DRLM statistic is robust to both misspecification and weak identification of the structural parameters, hence its name. To emphasize its importance for applied work, we use the DRLM test to analyze the return on education, which is often perceived to be weakly identified, using data from Card (1995) where misspecification occurs in case of treatment heterogeneity; and to analyze the risk premia associated with risk factors proposed in Adrian et al. (2014) and He et al. (2017), where both misspecification and weak identification need to be addressed.
81 - Yuya Sasaki , Takuya Ura 2018
The policy relevant treatment effect (PRTE) measures the average effect of switching from a status-quo policy to a counterfactual policy. Estimation of the PRTE involves estimation of multiple preliminary parameters, including propensity scores, conditional expectation functions of the outcome and covariates given the propensity score, and marginal treatment effects. These preliminary estimators can affect the asymptotic distribution of the PRTE estimator in complicated and intractable manners. In this light, we propose an orthogonal score for double debiased estimation of the PRTE, whereby the asymptotic distribution of the PRTE estimator is obtained without any influence of preliminary parameter estimators as far as they satisfy mild requirements of convergence rates. To our knowledge, this paper is the first to develop limit distribution theories for inference about the PRTE.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا