Do you want to publish a course? Click here

Kepler Harmonies and conformal symmetries

278   0   0.0 ( 0 )
 Added by Peter Horvathy
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Keplers rescaling becomes, when Eisenhart-Duval lifted to $5$-dimensional Bargmann gravitational wave spacetime, an ordinary spacetime symmetry for motion along null geodesics, which are the lifts of Keplerian trajectories. The lifted rescaling generates a well-behaved conserved Noether charge upstairs, which takes an unconventional form when expressed in conventional terms. This conserved quantity seems to have escaped attention so far. Applications include the Virial Theorem and also Keplers Third Law. The lifted Kepler rescaling is a Chrono-Projective transformation. The results extend to celestial mechanics and Newtonian Cosmology.



rate research

Read More

159 - Marco Cariglia 2015
We show that the Kepler problem is projectively equivalent to null geodesic motion on the conformal compactification of Minkowski-4 space. This space realises the conformal triality of Minkwoski, dS and AdS spaces.
We present a framework in which the projective symmetry of the Einstein-Hilbert action in metric-affine gravity is used to induce an effective coupling between the Dirac lagrangian and the Maxwell field. The effective $U(1)$ gauge potential arises as the trace of the non-metricity tensor $Q_{mu a}{}^a$ and couples in the appropriate way to the Dirac fields to in order to allow for local phase shifts. On shell, the obtained theory is equivalent to Einstein-Cartan-Maxwell theory in presence of Dirac spinors.
We study the covariant phase space of vacuum general relativity at the null boundary of causal diamonds. The past and future components of such a null boundary each have an infinite-dimensional symmetry algebra consisting of diffeomorphisms of the $2$-sphere and boost supertranslations corresponding to angle-dependent rescalings of affine parameter along the null generators. Associated to these symmetries are charges and fluxes obtained from the covariant phase space formalism using the prescription of Wald and Zoupas. By analyzing the behavior of the spacetime metric near the corners of the causal diamond, we show that the fluxes are also Hamiltonian generators of the symmetries on the phase space. In particular, the supertranslation fluxes yield an infinite family of boost Hamiltonians acting on the gravitational data of causal diamonds. We show that the smoothness of the vector fields representing such symmetries at the bifurcation edge of the causal diamond implies suitable matching conditions between the symmetries on the past and future components of the null boundary. Similarly, the smoothness of the spacetime metric implies that the fluxes of all such symmetries is conserved between the past and future components of the null boundary. This establishes an infinite set of conservation laws for finite subregions in gravity analogous to those at null infinity. We also show that the symmetry algebra at the causal diamond has a non-trivial center corresponding to constant boosts. The central charges associated to these constant boosts are proportional to the area of the bifurcation edge, for any causal diamond, in analogy with the Wald entropy formula.
In this letter, we first redefine our formalism of the thermodynamic geometry introduced in [1,2] by changing coordinates of the thermodynamic space by means of Jacobian matrices. We then show that the geometrothermodynamics (GTD) is conformally related to this new formalism of the thermodynamic geometry. This conformal transformation is singular at unphysical points were generated in GTD metric. Therefore, working with our metric neatly excludes all unphysical points without imposing any constraints.
We give a quantum mechanical description of accelerated relativistic particles in the framework of Coherent States (CS) of the (3+1)-dimensional conformal group SU(2,2), with the role of accelerations played by special conformal transformations and with the role of (proper) time translations played by dilations. The accelerated ground state $tildephi_0$ of first quantization is a CS of the conformal group. We compute the distribution function giving the occupation number of each energy level in $tildephi_0$ and, with it, the partition function Z, mean energy E and entropy S, which resemble that of an Einstein Solid. An effective temperature T can be assigned to this accelerated ensemble through the thermodynamic expression dE/dS, which leads to a (non linear) relation between acceleration and temperature different from Unruhs (linear) formula. Then we construct the corresponding conformal-SU(2,2)-invariant second quantized theory and its spontaneous breakdown when selecting Poincare-invariant degenerated theta-vacua (namely, coherent states of conformal zero modes). Special conformal transformations (accelerations) destabilize the Poincare vacuum and make it to radiate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا