Do you want to publish a course? Click here

Nonperturbative Ball-Chiu construction of the three-gluon vertex

126   0   0.0 ( 0 )
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We present the detailed derivation of the longitudinal part of the three-gluon vertex from the Slavnov-Taylor identities that it satisfies, by means of a nonperturbative implementation of the Ball-Chiu construction; the latter, in its original form, involves the inverse gluon propagator, the ghost dressing function, and certain form factors of the ghost-gluon kernel. The main conceptual subtlety that renders this endeavor nontrivial is the infrared finiteness of the gluon propagator, and the resulting need to separate the vertex into two pieces, one that is intimately connected with the emergence of a gluonic mass scale, and one that satisfies the original set of Slavnov-Taylor identities, but with the inverse gluon propagator replaced by its kinetic term. The longitudinal form factors obtained by this construction are presented for arbitrary Euclidean momenta, as well as special kinematic configurations, parametrized by a single momentum. A particularly preeminent feature of the components comprising the tree-level vertex is their considerable suppression for momenta below 1 GeV, and the appearance of the characteristic zero-crossing in the vicinity of 100-200 MeV. Special combinations of the form factors derived with this method are compared with the results of recent large-volume lattice simulations as well as Schwinger-Dyson equations, and good overall agreement is found. A variety of issues related to the distribution of the pole terms responsible for the gluon mass generation are discussed in detail, and their impact on the structure of the transverse parts is elucidated. In addition, a brief account of several theoretical and phenomenological possibilities involving these newly acquired results is presented.



rate research

Read More

We present novel lattice results for the form factors of the quenched three-gluon vertex of QCD, in two special kinematic configurations that depend on a single momentum scale. We consider three form factors, two associated with a classical tensor structure and one without tree-level counterpart, exhibiting markedly different infrared behaviors. Specifically, while the former display the typical suppression driven by a negative logarithmic singularity at the origin, the latter saturates at a small negative constant. These exceptional features are analyzed within the Schwinger-Dyson framework, with the aid of special relations obtained from the Slavnov-Taylor identities of the theory. The emerging picture of the underlying dynamics is thoroughly corroborated by the lattice results, both qualitatively as well as quantitatively.
We report on new results on the infrared behaviour of the three-gluon vertex in quenched Quantum Chormodynamics, obtained from large-volume lattice simulations. The main focus of our study is the appearance of the characteristic infrared feature known as zero crossing, the origin of which is intimately connected with the nonperturbative masslessness of the Faddeev-Popov ghost. The appearance of this effect is clearly visible in one of the two kinematic configurations analyzed, and its theoretical origin is discussed in the framework of Schwinger-Dyson equations. The effective coupling in the momentum subtraction scheme that corresponds to the three-gluon vertex is constructed, revealing the vanishing of the effective interaction at the exact location of the zero crossing.
We present a detailed analysis of the kinetic and mass terms associated with the Landau gauge gluon propagator in the presence of dynamical quarks, and a comprehensive dynamical study of certain special kinematic limits of the three-gluon vertex. Our approach capitalizes on results from recent lattice simulations with (2+1) domain wall fermions, a novel nonlinear treatment of the gluon mass equation, and the nonperturbative reconstruction of the longitudinal three-gluon vertex from its fundamental Slavnov-Taylor identities. Particular emphasis is placed on the persistence of the suppression displayed by certain combinations of the vertex form factors at intermediate and low momenta, already known from numerous pure Yang-Mills studies. One of our central findings is that the inclusion of dynamical quarks moderates the intensity of this phenomenon only mildly, leaving the asymptotic low-momentum behavior unaltered, but displaces the characteristic zero crossing deeper into the infrared region. In addition, the effect of the three-gluon vertex is explored at the level of the renormalization-group invariant combination corresponding to the effective gauge coupling, whose size is considerably reduced with respect to its counterpart obtained from the ghost-gluon vertex. The main upshot of the above considerations is the further confirmation of the tightly interwoven dynamics between the two- and three-point sectors of QCD.
The ghost-gluon scattering kernel is a special correlation function that is intimately connected with two fundamental vertices of the gauge sector of QCD: the ghost-gluon vertex, which may be obtained from it through suitable contraction, and the three-gluon vertex, whose Slavnov-Taylor identity contains that kernel as one of its main ingredients. In this work we present a detailed nonperturbative study of the five form factors comprising it, using as starting point the `one-loop dressed approximation of the dynamical equations governing their evolution. The analysis is carried out for arbitrary Euclidean momenta, and makes extensive use of the gluon propagator and the ghost dressing function, whose infrared behavior has been firmly established from a multitude of continuum studies and large-volume lattice simulations. In addition, special Ansatze are employed for the vertices entering in the relevant equations, and their impact on the results is scrutinized in detail. Quite interestingly, the veracity of the approximations employed may be quantitatively tested by appealing to an exact relation, which fixes the value of a special combination of the form factors under construction. The results obtained furnish the two form factors of the ghost-gluon vertex for arbitrary momenta, and, more importantly, pave the way towards the nonperturbative generalization of the Ball-Chiu construction for the longitudinal part of the three-gluon vertex.
The Dyson-Schwinger quark equation is solved for the quark-gluon vertex using the most recent lattice data available in the Landau gauge for the quark, gluon and ghost propagators, the full set of longitudinal tensor structures in the Ball-Chiu vertex, taking into account a recently derived normalisation for a quark-ghost kernel form factors and the gluon contribution for the tree level quark-gluon vertex identified on a recent study of the lattice soft gluon limit. A solution for the inverse problem is computed after the Tikhonov linear regularisation of the integral equation, that implies solving a modified Dyson-Schwinger equation. We get longitudinal form factors that are strongly enhanced at the infrared region, deviate significantly from the tree level results for quark and gluon momentum below 2 GeV and at higher momentum approach their perturbative values. The computed quark-gluon vertex favours kinematical configurations where the quark momentum $p$ and the gluon momentum $q$ are small and parallel. Further, the quark-gluon vertex is dominated by the form factors associated to the tree level vertex $gamma_mu$ and to the operator $2 , p_mu + q_mu$. The higher rank tensor structures provide small contributions to the vertex.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا