No Arabic abstract
The Dyson-Schwinger quark equation is solved for the quark-gluon vertex using the most recent lattice data available in the Landau gauge for the quark, gluon and ghost propagators, the full set of longitudinal tensor structures in the Ball-Chiu vertex, taking into account a recently derived normalisation for a quark-ghost kernel form factors and the gluon contribution for the tree level quark-gluon vertex identified on a recent study of the lattice soft gluon limit. A solution for the inverse problem is computed after the Tikhonov linear regularisation of the integral equation, that implies solving a modified Dyson-Schwinger equation. We get longitudinal form factors that are strongly enhanced at the infrared region, deviate significantly from the tree level results for quark and gluon momentum below 2 GeV and at higher momentum approach their perturbative values. The computed quark-gluon vertex favours kinematical configurations where the quark momentum $p$ and the gluon momentum $q$ are small and parallel. Further, the quark-gluon vertex is dominated by the form factors associated to the tree level vertex $gamma_mu$ and to the operator $2 , p_mu + q_mu$. The higher rank tensor structures provide small contributions to the vertex.
We present novel lattice results for the form factors of the quenched three-gluon vertex of QCD, in two special kinematic configurations that depend on a single momentum scale. We consider three form factors, two associated with a classical tensor structure and one without tree-level counterpart, exhibiting markedly different infrared behaviors. Specifically, while the former display the typical suppression driven by a negative logarithmic singularity at the origin, the latter saturates at a small negative constant. These exceptional features are analyzed within the Schwinger-Dyson framework, with the aid of special relations obtained from the Slavnov-Taylor identities of the theory. The emerging picture of the underlying dynamics is thoroughly corroborated by the lattice results, both qualitatively as well as quantitatively.
The infrared behavior of the quark-gluon vertex of quenched Landau gauge QCD is studied by analyzing its Dyson-Schwinger equation. Building on previously obtained results for Green functions in the Yang-Mills sector we analytically derive the existence of power-law infrared singularities for this vertex. We establish that dynamical chiral symmetry breaking leads to the self-consistent generation of components of the quark-gluon vertex forbidden when chiral symmetry is forced to stay in the Wigner-Weyl mode. In the latter case the running strong coupling assumes an infrared fixed point. If chiral symmetry is broken, either dynamically or explicitely, the running coupling is infrared divergent. Based on a truncation for the quark-gluon vertex Dyson-Schwinger equation which respects the analytically determined infrared behavior numerical results for the coupled system of the quark propagator and vertex Dyson-Schwinger equation are presented. The resulting quark mass function as well as the vertex function show only a very weak dependence on the current quark mass in the deep infrared. From this we infer by an analysis of the quark-quark scattering kernel a linearly rising quark potential with an almost mass independent string tension in the case of broken chiral symmetry. Enforcing chiral symmetry does lead to a Coulomb type potential. Therefore we conclude that chiral symmetry breaking and confinement are closely related. Furthermore we discuss aspects of confinement as the absence of long-range van-der-Waals forces and Casimir scaling. An examination of experimental data for quarkonia provides further evidence for the viability of the presented mechanism for quark confinement in the Landau gauge.
The soft gluon limit of the longitudinal part of the quark-gluon vertex is studied by resorting to non-perturbative approaches to Quantum Chromodynamics (QCD). Based on a Slavnov-Taylor identity (STI), the longitudinal form factors is expressed in terms of the quark-ghost kernel, the quark self energy and the quark wave function. An exact relation between the non-vanishing longitudinal form factors is derived for the soft gluon limit and explored to understand the behaviour of the vertex. Within a Ball-Chiu vertex, the form factor $lambda_1$ was analysed using recent lattice simulations for full QCD for the soft gluon limit. The lattice data shows that the gluon propagator resumes the momentum dependence of such component of the vertex. This connection is understood via a fully dressed one-loop Bethe-Salpeter equation. The behaviour of the remaining longitudinal form factors $lambda_2(p^2)$ and $lambda_3(p^2)$ is investigated combining both the information of lattice simulations and the derived relations based on the STI.
We investigate the dressed quark-gluon vertex combining two established non-perturbative approaches to QCD: the Dyson-Schwinger equation (DSE) for the quark propagator and lattice-regularized simulations for the quark, gluon and ghost propagators. The vertex is modeled using a generalized Ball-Chiu ansatz parameterized by a single form factor $tilde X_0$ which effectively represents the quark-ghost scattering kernel. The solution space of the DSE inversion for $tilde X_0$ is highly degenerate, which can be dealt with by a numerical regularization scheme. We consider two possibilities: (i) linear regularization and (ii) the Maximum Entropy Method. These two numerical approaches yield compatible $tilde X_0$ functions for the range of momenta where lattice data is available and feature a strong enhancement of the generalized Ball-Chiu vertex for momenta below 1 GeV. Our ansatz for the quark-gluon vertex is then used to solve the quark DSE which yields a mass function in good agreement with lattice simulations and thus provides adequate dynamical chiral symmetry breaking.
We present a detailed analysis of the kinetic and mass terms associated with the Landau gauge gluon propagator in the presence of dynamical quarks, and a comprehensive dynamical study of certain special kinematic limits of the three-gluon vertex. Our approach capitalizes on results from recent lattice simulations with (2+1) domain wall fermions, a novel nonlinear treatment of the gluon mass equation, and the nonperturbative reconstruction of the longitudinal three-gluon vertex from its fundamental Slavnov-Taylor identities. Particular emphasis is placed on the persistence of the suppression displayed by certain combinations of the vertex form factors at intermediate and low momenta, already known from numerous pure Yang-Mills studies. One of our central findings is that the inclusion of dynamical quarks moderates the intensity of this phenomenon only mildly, leaving the asymptotic low-momentum behavior unaltered, but displaces the characteristic zero crossing deeper into the infrared region. In addition, the effect of the three-gluon vertex is explored at the level of the renormalization-group invariant combination corresponding to the effective gauge coupling, whose size is considerably reduced with respect to its counterpart obtained from the ghost-gluon vertex. The main upshot of the above considerations is the further confirmation of the tightly interwoven dynamics between the two- and three-point sectors of QCD.