No Arabic abstract
We present Karl G. Jansky Very Large Array (VLA) observations of the CO (2$-$1) line emission towards three far-infrared luminous quasars at $zsim6$: SDSS J231038.88$+$185519.7 and SDSS J012958.51$-$003539.7 with $sim0farcs6$ resolution and SDSS J205406.42$-$000514.8 with $sim2farcs1$ resolution. All three sources are detected in the CO (2$-$1) line emission -- one source is marginally resolved, and the other two appear as point sources. Measurements of the CO (2$-$1) line emission allow us to calculate the molecular gas mass even without a CO excitation model. The inferred molecular gas masses are (0.8$-$4.3) $times$ 10$^{10}$ $M_{odot}$. The widths and redshifts derived from the CO (2$-$1) line are consistent with previous CO (6$-$5) and [ion{C}{2}] measurements. We also report continuum measurements using the Herschel for SDSS J231038.88$+$185519.7 and SDSS J012958.51$-$003539.7, and for SDSS J231038.88+185519.7, data obtained at $sim140$ and $sim300$ GHz using the Atacama Large Millimeter/submillimeter Array (ALMA). In the case of SDSS J231038.88+185519.7, we present a detailed analysis of the spectral energy distribution and derive the dust temperature ($sim40$ K), the dust mass ($sim10^{9}$ $M_{odot}$), the far-infrared luminosity (8$-$1000 $mu$m; $sim10^{13}$ $ L_{odot}$) and the star formation rate (2400$-$2700 $M_{odot}$ yr$^{-1}$). Finally, an analysis of the photo-dissociation regions associated with the three high redshift quasars indicates that the interstellar medium in these sources has similar properties to local starburst galaxies.
Long-duration Gamma-Ray Bursts (GRBs) allow us to pinpoint and study star-forming galaxies in the early universe, thanks to their orders of magnitude brighter peak luminosities compared to other astrophysical sources, and their association with deaths of massive stars. We present Hubble Space Telescope Wide Field Camera 3 detections of three Swift GRB host galaxies lying at redshifts $z = 5.913$ (GRB 130606A), $z = 6.295$ (GRB 050904), and $z = 6.327$ (GRB 140515A) in the F140W (wide-$JH$ band, $lambda_{rm{obs}}sim1.4,mu m$) filter. The hosts have magnitudes (corrected for Galactic extinction) of $m_{rm{lambda_{obs},AB}}= 26.34^{+0.14}_{-0.16}, 27.56^{+0.18}_{-0.22},$ and $28.30^{+0.25}_{-0.33}$ respectively. In all three cases the probability of chance coincidence of lower redshift galaxies is $lesssim2,%$, indicating that the detected galaxies are most likely the GRB hosts. These are the first detections of high redshift ($z > 5$) GRB host galaxies in emission. The galaxies have luminosities in the range $0.1-0.6,L^{*}_{z=6}$ (with $M_{1600}^{*}=-20.95pm0.12$), and half-light radii in the range $0.6-0.9,rm{kpc}$. Both their half-light radii and luminosities are consistent with existing samples of Lyman-break galaxies at $zsim6$. Spectroscopic analysis of the GRB afterglows indicate low metallicities ($[rm{M/H}]lesssim-1$) and low dust extinction ($A_{rm{V}}lesssim0.1$) along the line of sight. Using stellar population synthesis models, we explore the implications of each galaxys luminosity for its possible star formation history, and consider the potential for emission-line metallicity determination with the upcoming James Webb Space Telescope.
Gamma-Ray Bursts (GRBs) can be a promising tracer of cosmic star-formation rate history (CSFRH). In order to reveal the CSFRH using GRBs, it is important to understand whether they are biased tracers or not. For this purpose, it is crucial to understand properties of GRB host galaxies, in comparison to field galaxies. In this work, we report ALMA far-infrared (FIR) observations of six $zsim2$ IR-bright GRB host galaxies, which are selected for the brightness in IR. Among them, four host galaxies are detected for the first time in the rest-frame FIR. In addition to the ALMA data, we collected multi-wavelength data from previous studies for the six GRB host galaxies. Spectral energy distribution (SED) fitting analyses were performed with texttt{CIGALE} to investigate physical properties of the host galaxies, and to test whether active galactic nucleus (AGN) and radio components are required or not. Our results indicate that the best-fit templates of five GRB host galaxies do not require an AGN component, suggesting the absence of AGNs. One GRB host galaxy, 080207, shows a very small AGN contribution. While derived stellar masses of the three host galaxies are mostly consistent with those in previous studies, interestingly the value of star-formation rates (SFRs) of all six GRB hosts are inconsistent with previous studies. Our results indicate the importance of rest-frame FIR observations to correctly estimate SFRs by covering thermal emission from cold dust heated by star formation.
The most heavily-obscured, luminous quasars might represent a specific phase of the evolution of actively accreting supermassive black holes and their host galaxies, possibly related to mergers. We investigated a sample of the most luminous quasars at $zapprox 1-3$ in the GOODS fields, selected in the mid-infrared band through detailed spectral energy distribution (SED) decomposition. The vast majority of these quasars (~80%) are obscured in the X-ray band and ~30% of them to such an extent, that they are undetected in some of the deepest (2 and 4 Ms) Chandra X-ray data. Although no clear relation is found between the star-formation rate of the host galaxies and the X-ray obscuration, we find a higher incidence of heavily-obscured quasars in disturbed/merging galaxies compared to the unobscured ones, thus possibly representing an earlier stage of evolution, after which the system is relaxing and becoming unobscured.
We investigate the relation between star formation rates ($dot{M}_{s}$) and AGN properties in optically selected type 1 quasars at $2<z<3$ using data from Herschel and the SDSS. We find that $dot{rm{M}}_s$ remains approximately constant with redshift, at $300pm100~rm{M}_{odot}$yr$^{-1}$. Conversely, $dot{rm{M}}_s$ increases with AGN luminosity, up to a maximum of $sim600~rm{M}_{odot}$yr$^{-1}$, and with CIV FWHM. In context with previous results, this is consistent with a relation between $dot{rm{M}}_s$ and black hole accretion rate ($dot{rm{M}}_{bh}$) existing in only parts of the $z-dot{rm{M}}_{s}-dot{rm{M}}_{bh}$ plane, dependent on the free gas fraction, the trigger for activity, and the processes that may quench star formation. The relations between $dot{rm{M}}_s$ and both AGN luminosity and CIV FWHM are consistent with star formation rates in quasars scaling with black hole mass, though we cannot rule out a separate relation with black hole accretion rate. Star formation rates are observed to decline with increasing CIV equivalent width. This decline can be partially explained via the Baldwin effect, but may have an additional contribution from one or more of three factors; $M_i$ is not a linear tracer of L$_{2500}$, the Baldwin effect changes form at high AGN luminosities, and high CIV EW values signpost a change in the relation between $dot{rm{M}}_s$ and $dot{rm{M}}_{bh}$. Finally, there is no strong relation between $dot{rm{M}}_s$ and Eddington ratio, or the asymmetry of the CIV line. The former suggests that star formation rates do not scale with how efficiently the black hole is accreting, while the latter is consistent with CIV asymmetries arising from orientation effects.
We present the analysis of the integrated spectral energy distribution (SED) from the ultraviolet (UV) to the far-infrared and H$alpha$ of a sample of 29 local systems and individual galaxies with infrared (IR) luminosities between 10^11 Lsun and 10^11.8 Lsun. We have combined new narrow-band H$alpha$+[NII] and broad-band g, r optical imaging taken with the Nordic Optical Telescope (NOT), with archival GALEX, 2MASS, Spitzer, and Herschel data. The SEDs (photometry and integrated H$alpha$ flux) have been fitted with a modified version of the MAGPHYS code using stellar population synthesis models for the UV-near-IR range and thermal emission models for the IR emission taking into account the energy balance between the absorbed and re-emitted radiation. From the SED fits we derive the star-formation histories (SFH) of these galaxies. For nearly half of them the star-formation rate appears to be approximately constant during the last few Gyrs. In the other half, the current star-formation rate seems to be enhanced by a factor of 3-20 with respect to that occured ~1 Gyr ago. Objects with constant SFH tend to be more massive than starbursts and they are compatible with the expected properties of a main-sequence (M-S) galaxy. Likewise, the derived SFHs show that all our objects were M-S galaxies ~1 Gyr ago with stellar masses between 10^10.1 and 10^11.5 Msun. We also derived from our fits the average extinction (A_v=0.6-3 mag) and the polycyclic aromatic hydrocarbons (PAH) luminosity to L(IR) ratio (0.03-0.16). We combined the A_v with the total IR and H$alpha$ luminosities into a diagram which can be used to identify objects with rapidly changing (increasing or decreasing) SFR during the last 100 Myr.