Do you want to publish a course? Click here

Signature of Dispersing 1D Majorana Channels in an Iron-based Superconductor

128   0   0.0 ( 0 )
 Added by Zhenyu Wang
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The possible realization of Majorana fermions as quasiparticle excitations in condensed matter physics has created much excitement. Most recent studies have focused on Majorana bound states which can serve as topological qubits. More generally, akin to elementary particles, Majorana fermions can propagate and display linear dispersion. These excitations have not yet been directly observed, and can also be used for quantum information processing. One route to realizing this is in a line junction between two phase-shifted superconductors coupled to topological surface states. Recent theory indicates that in iron-based superconductors, a particular type of crystalline defect, i.e., a domain wall (DW) between two regions with a half-unit cell shift between them, should create a $pi$-phase shift in the superconducting order parameter. Combined with recent data showing topological surface states in FeSe$_x$Te$_{1-x}$ we find that this is the ideal system to realize helical 1D-dispersing Majorana modes. Here we report scanning tunneling spectroscopic (STS) measurements of crystalline DWs in FeSe$_{0.45}$Te$_{0.55}$. By analyzing large-area superconducting gap maps, we identify the gap in the topological surface state, demonstrating that our sample is an effective Fu-Kane proximitized topological system. We further locate DWs across which the atoms shift by half a unit cell. STS data on these DWs reveal a flat density of states inside the superconducting gap, a hallmark of linearly dispersing modes in 1D. This unique signature is absent in DWs in the related superconductor, FeSe which is not in the topological phase. Our combined data are consistent with the observation of dispersing Majorana states at a $pi$-phase shift DW in a proximitized topological material.



rate research

Read More

The search for Majorana bound state (MBS) has recently emerged as one of the most active research areas in condensed matter physics, fueled by the prospect of using its non-Abelian statistics for robust quantum computation. A highly sought-after platform for MBS is two-dimensional topological superconductors, where MBS is predicted to exist as a zero-energy mode in the core of a vortex. A clear observation of MBS, however, is often hindered by the presence of additional low-lying bound states inside the vortex core. By using scanning tunneling microscope on the newly discovered superconducting Dirac surface state of iron-based superconductor FeTe1-xSex (x = 0.45, superconducting transition temperature Tc = 14.5 K), we clearly observe a sharp and non-split zero-bias peak inside a vortex core. Systematic studies of its evolution under different magnetic fields, temperatures, and tunneling barriers strongly suggest that this is the case of tunneling to a nearly pure MBS, separated from non-topological bound states which is moved away from the zero energy due to the high ratio between the superconducting gap and the Fermi energy in this material. This observation offers a new, robust platform for realizing and manipulating MBSs at a relatively high temperature.
Braiding Majorana zero modes is essential for fault-tolerant topological quantum computing. Iron-based superconductors with nontrivial band topology have recently emerged as a surprisingly promising platform for creating distinct Majorana zero modes in magnetic vortices in a single material and at relatively high temperatures. The magnetic field-induced Abrikosov vortex lattice makes it difficult to braid a set of Majorana zero modes or to study the coupling of a Majorana doublet due to overlapping wave functions. Here we report the observation of the proposed quantum anomalous vortex with integer quantized vortex core states and the Majorana zero mode induced by magnetic Fe adatoms deposited on the surface. We observe its hybridization with a nearby field-induced Majorana vortex in iron-based superconductor FeTe0.55Se0.45. We also observe vortex-free Yu-Shiba-Rusinov bound states at the Fe adatoms with a weaker coupling to the substrate, and discover a reversible transition between Yu-Shiba-Rusinov states and Majorana zero mode by manipulating the exchange coupling strength. The dual origin of the Majorana zero modes, from magnetic adatoms and external magnetic field, provides a new single-material platform for studying their interactions and braiding in superconductors bearing topological band structures.
Among the mysteries surrounding unconventional, strongly correlated superconductors is the possibility of spatial variations in their superfluid density. We use atomic-resolution Josephson scanning tunneling microscopy to reveal a strongly inhomogeneous superfluid in the iron-based superconductor FeTe0.55Se0.45. By simultaneously measuring the topographic and electronic properties, we find that this inhomogeneity in the superfluid density is not caused by structural disorder or strong inter-pocket scattering, and does not correlate with variations in Cooper pair-breaking gap. Instead, we see a clear spatial correlation between superfluid density and quasiparticle strength, putting the iron-based superconductors on equal footing with the cuprates and demonstrating that locally, the quasiparticles are sharpest when the superconductivity is strongest. When repeated at different temperatures, our technique could further help elucidate what local and global mechanisms limit the critical temperature in unconventional superconductors.
A theory of superconductivity in the iron-based materials requires an understanding of the phase diagram of the normal state. In these compounds, superconductivity emerges when stripe spin density wave (SDW) order is suppressed by doping, pressure or atomic disorder. This magnetic order is often pre-empted by nematic order, whose origin is yet to be resolved. One scenario is that nematic order is driven by orbital ordering of the iron 3d-electrons that triggers stripe SDW order. Another is that magnetic interactions produce a spin-nematic phase, which then induces orbital order. In this article, we report the observation by neutron powder diffraction of an additional four- fold-symmetric phase in Ba1-xNaxFe2As2 close to the suppression of SDW order, which is consistent with the predictions of magnetically-driven models of nematic order.
287 - Rui Song , Ping Zhang , Ning Hao 2021
Recent experiment reported the evidence of dispersing one-dimensional Majorana mode trapped by the crystalline domain walls in FeSe0.45Te0.55. Here, we perform the first-principles calculationsto show that iron atoms in the domain wall spontaneously form the ferromagnetic order in line withorientation of the wall. The ferromagnetism can impose a $pi$ phase difference between the domain-wall-separated surface superconducting regimes under the appropriate thickness and magnetization of the wall. Accordingly, the topological surface superconducting state of FeSe$_{0.45}$Te$_{0.55}$ can give rise to one-dimensional Majorana modes bounded by the wall. More importantly, we further propose a topological phase battery junction in the form of FeSe$_{0.45}$Te$_{0.55}$/ferromagnet/FeSe$_{0.45}$Te$_{0.55}$, which can be adopted to create and fuse the Majorana zero modes through controlling the thickness or magnetization of the interior ferromagnetic barrier. The braiding and readout of Majorana zero modes can easily be realized by the designed device. Such topological phase battery junction has the potential application in the superconducting topological quantum computation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا