No Arabic abstract
Human perception is structured around objects which form the basis for our higher-level cognition and impressive systematic generalization abilities. Yet most work on representation learning focuses on feature learning without even considering multiple objects, or treats segmentation as an (often supervised) preprocessing step. Instead, we argue for the importance of learning to segment and represent objects jointly. We demonstrate that, starting from the simple assumption that a scene is composed of multiple entities, it is possible to learn to segment images into interpretable objects with disentangled representations. Our method learns -- without supervision -- to inpaint occluded parts, and extrapolates to scenes with more objects and to unseen objects with novel feature combinations. We also show that, due to the use of iterative variational inference, our system is able to learn multi-modal posteriors for ambiguous inputs and extends naturally to sequences.
Modeling the temporal behavior of data is of primordial importance in many scientific and engineering fields. Baseline methods assume that both the dynamic and observation equations follow linear-Gaussian models. However, there are many real-world processes that cannot be characterized by a single linear behavior. Alternatively, it is possible to consider a piecewise-linear model which, combined with a switching mechanism, is well suited when several modes of behavior are needed. Nevertheless, switching dynamical systems are intractable because of their computational complexity increases exponentially with time. In this paper, we propose a variational approximation of piecewise linear dynamical systems. We provide full details of the derivation of two variational expectation-maximization algorithms, a filter and a smoother. We show that the model parameters can be split into two sets, static and dynamic parameters, and that the former parameters can be estimated off-line together with the number of linear modes, or the number of states of the switching variable. We apply the proposed method to a visual tracking problem, namely head-pose tracking, and we thoroughly compare our algorithm with several state of the art trackers.
The fundamental challenge of planning for multi-step manipulation is to find effective and plausible action sequences that lead to the task goal. We present Cascaded Variational Inference (CAVIN) Planner, a model-based method that hierarchically generates plans by sampling from latent spaces. To facilitate planning over long time horizons, our method learns latent representations that decouple the prediction of high-level effects from the generation of low-level motions through cascaded variational inference. This enables us to model dynamics at two different levels of temporal resolutions for hierarchical planning. We evaluate our approach in three multi-step robotic manipulation tasks in cluttered tabletop environments given high-dimensional observations. Empirical results demonstrate that the proposed method outperforms state-of-the-art model-based methods by strategically interacting with multiple objects.
Despite the recent success in probabilistic modeling and their applications, generative models trained using traditional inference techniques struggle to adapt to new distributions, even when the target distribution may be closely related to the ones seen during training. In this work, we present a doubly-amortized variational inference procedure as a way to address this challenge. By sharing computation across not only a set of query inputs, but also a set of different, related probabilistic models, we learn transferable latent representations that generalize across several related distributions. In particular, given a set of distributions over images, we find the learned representations to transfer to different data transformations. We empirically demonstrate the effectiveness of our method by introducing the MetaVAE, and show that it significantly outperforms baselines on downstream image classification tasks on MNIST (10-50%) and NORB (10-35%).
Learning object-centric representations of complex scenes is a promising step towards enabling efficient abstract reasoning from low-level perceptual features. Yet, most deep learning approaches learn distributed representations that do not capture the compositional properties of natural scenes. In this paper, we present the Slot Attention module, an architectural component that interfaces with perceptual representations such as the output of a convolutional neural network and produces a set of task-dependent abstract representations which we call slots. These slots are exchangeable and can bind to any object in the input by specializing through a competitive procedure over multiple rounds of attention. We empirically demonstrate that Slot Attention can extract object-centric representations that enable generalization to unseen compositions when trained on unsupervised object discovery and supervised property prediction tasks.
This paper describes InfoCatVAE, an extension of the variational autoencoder that enables unsupervised disentangled representation learning. InfoCatVAE uses multimodal distributions for the prior and the inference network and then maximizes the evidence lower bound objective (ELBO). We connect the new ELBO derived for our model with a natural soft clustering objective which explains the robustness of our approach. We then adapt the InfoGANs method to our setting in order to maximize the mutual information between the categorical code and the generated inputs and obtain an improved model.