Do you want to publish a course? Click here

The principles of adaptation in organisms and machines I: machine learning, information theory, and thermodynamics

145   0   0.0 ( 0 )
 Added by Hideaki Shimazaki
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

How do organisms recognize their environment by acquiring knowledge about the world, and what actions do they take based on this knowledge? This article examines hypotheses about organisms adaptation to the environment from machine learning, information-theoretic, and thermodynamic perspectives. We start with constructing a hierarchical model of the world as an internal model in the brain, and review standard machine learning methods to infer causes by approximately learning the model under the maximum likelihood principle. This in turn provides an overview of the free energy principle for an organism, a hypothesis to explain perception and action from the principle of least surprise. Treating this statistical learning as communication between the world and brain, learning is interpreted as a process to maximize information about the world. We investigate how the classical theories of perception such as the infomax principle relates to learning the hierarchical model. We then present an approach to the recognition and learning based on thermodynamics, showing that adaptation by causal learning results in the second law of thermodynamics whereas inference dynamics that fuses observation with prior knowledge forms a thermodynamic process. These provide a unified view on the adaptation of organisms to the environment.

rate research

Read More

250 - Hideaki Shimazaki 2020
This article reviews how organisms learn and recognize the world through the dynamics of neural networks from the perspective of Bayesian inference, and introduces a view on how such dynamics is described by the laws for the entropy of neural activity, a paradigm that we call thermodynamics of the Bayesian brain. The Bayesian brain hypothesis sees the stimulus-evoked activity of neurons as an act of constructing the Bayesian posterior distribution based on the generative model of the external world that an organism possesses. A closer look at the stimulus-evoked activity at early sensory cortices reveals that feedforward connections initially mediate the stimulus-response, which is later modulated by input from recurrent connections. Importantly, not the initial response, but the delayed modulation expresses animals cognitive states such as awareness and attention regarding the stimulus. Using a simple generative model made of a spiking neural population, we reproduce the stimulus-evoked dynamics with the delayed feedback modulation as the process of the Bayesian inference that integrates the stimulus evidence and a prior knowledge with time-delay. We then introduce a thermodynamic view on this process based on the laws for the entropy of neural activity. This view elucidates that the process of the Bayesian inference works as the recently-proposed information-theoretic engine (neural engine, an analogue of a heat engine in thermodynamics), which allows us to quantify the perceptual capacity expressed in the delayed modulation in terms of entropy.
The goal of the present study is to identify autism using machine learning techniques and resting-state brain imaging data, leveraging the temporal variability of the functional connections (FC) as the only information. We estimated and compared the FC variability across brain regions between typical, healthy subjects and autistic population by analyzing brain imaging data from a world-wide multi-site database known as ABIDE (Autism Brain Imaging Data Exchange). Our analysis revealed that patients diagnosed with autism spectrum disorder (ASD) show increased FC variability in several brain regions that are associated with low FC variability in the typical brain. We then used the enhanced FC variability of brain regions as features for training machine learning models for ASD classification and achieved 65% accuracy in identification of ASD versus control subjects within the dataset. We also used node strength estimated from number of functional connections per node averaged over the whole scan as features for ASD classification.The results reveal that the dynamic FC measures outperform or are comparable with the static FC measures in predicting ASD.
Finite-sized populations of spiking elements are fundamental to brain function, but also used in many areas of physics. Here we present a theory of the dynamics of finite-sized populations of spiking units, based on a quasi-renewal description of neurons with adaptation. We derive an integral equation with colored noise that governs the stochastic dynamics of the population activity in response to time-dependent stimulation and calculate the spectral density in the asynchronous state. We show that systems of coupled populations with adaptation can generate a frequency band in which sensory information is preferentially encoded. The theory is applicable to fully as well as randomly connected networks, and to leaky integrate-and-fire as well as to generalized spiking neurons with adaptation on multiple time scales.
A strong preference for novelty emerges in infancy and is prevalent across the animal kingdom. When incorporated into reinforcement-based machine learning algorithms, visual novelty can act as an intrinsic reward signal that vastly increases the efficiency of exploration and expedites learning, particularly in situations where external rewards are difficult to obtain. Here we review parallels between recent developments in novelty-driven machine learning algorithms and our understanding of how visual novelty is computed and signaled in the primate brain. We propose that in the visual system, novelty representations are not configured with the principal goal of detecting novel objects, but rather with the broader goal of flexibly generalizing novelty information across different states in the service of driving novelty-based learning.
Interpretability in machine learning (ML) is crucial for high stakes decisions and troubleshooting. In this work, we provide fundamental principles for interpretable ML, and dispel common misunderstandings that dilute the importance of this crucial topic. We also identify 10 technical challenge areas in interpretable machine learning and provide history and background on each problem. Some of these problems are classically important, and some are recent problems that have arisen in the last few years. These problems are: (1) Optimizing sparse logical models such as decision trees; (2) Optimization of scoring systems; (3) Placing constraints into generalized additive models to encourage sparsity and better interpretability; (4) Modern case-based reasoning, including neural networks and matching for causal inference; (5) Complete supervised disentanglement of neural networks; (6) Complete or even partial unsupervised disentanglement of neural networks; (7) Dimensionality reduction for data visualization; (8) Machine learning models that can incorporate physics and other generative or causal constraints; (9) Characterization of the Rashomon set of good models; and (10) Interpretable reinforcement learning. This survey is suitable as a starting point for statisticians and computer scientists interested in working in interpretable machine learning.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا