Do you want to publish a course? Click here

Fluctuations and information filtering in coupled populations of spiking neurons with adaptation

543   0   0.0 ( 0 )
 Added by Moritz Deger
 Publication date 2013
  fields Biology
and research's language is English




Ask ChatGPT about the research

Finite-sized populations of spiking elements are fundamental to brain function, but also used in many areas of physics. Here we present a theory of the dynamics of finite-sized populations of spiking units, based on a quasi-renewal description of neurons with adaptation. We derive an integral equation with colored noise that governs the stochastic dynamics of the population activity in response to time-dependent stimulation and calculate the spectral density in the asynchronous state. We show that systems of coupled populations with adaptation can generate a frequency band in which sensory information is preferentially encoded. The theory is applicable to fully as well as randomly connected networks, and to leaky integrate-and-fire as well as to generalized spiking neurons with adaptation on multiple time scales.



rate research

Read More

The macroscopic dynamics of large populations of neurons can be mathematically analyzed using low-dimensional firing-rate or neural-mass models. However, these models fail to capture spike synchronization effects of stochastic spiking neurons such as the non-stationary population response to rapidly changing stimuli. Here, we derive low-dimensional firing-rate models for homogeneous populations of general renewal-type neurons, including integrate-and-fire models driven by white noise. Renewal models account for neuronal refractoriness and spike synchronization dynamics. The derivation is based on an eigenmode expansion of the associated refractory density equation, which generalizes previous spectral methods for Fokker-Planck equations to arbitrary renewal models. We find a simple relation between the eigenvalues, which determine the characteristic time scales of the firing rate dynamics, and the Laplace transform of the interspike interval density or the survival function of the renewal process. Analytical expressions for the Laplace transforms are readily available for many renewal models including the leaky integrate-and-fire model. Retaining only the first eigenmode yields already an adequate low-dimensional approximation of the firing-rate dynamics that captures spike synchronization effects and fast transient dynamics at stimulus onset. We explicitly demonstrate the validity of our model for a large homogeneous population of Poisson neurons with absolute refractoriness, and other renewal models that admit an explicit analytical calculation of the eigenvalues. The here presented eigenmode expansion provides a systematic framework for novel firing-rate models in computational neuroscience based on spiking neuron dynamics with refractoriness.
Collective oscillations and their suppression by external stimulation are analyzed in a large-scale neural network consisting of two interacting populations of excitatory and inhibitory quadratic integrate-and-fire neurons. In the limit of an infinite number of neurons, the microscopic model of this network can be reduced to an exact low-dimensional system of mean-field equations. Bifurcation analysis of these equations reveals three different dynamic modes in a free network: a stable resting state, a stable limit cycle, and bistability with a coexisting resting state and a limit cycle. We show that in the limit cycle mode, high-frequency stimulation of an inhibitory population can stabilize an unstable resting state and effectively suppress collective oscillations. We also show that in the bistable mode, the dynamics of the network can be switched from a stable limit cycle to a stable resting state by applying an inhibitory pulse to the excitatory population. The results obtained from the mean-field equations are confirmed by numerical simulation of the microscopic model.
The dominant modeling framework for understanding cortical computations are heuristic firing rate models. Despite their success, these models fall short to capture spike synchronization effects, to link to biophysical parameters and to describe finite-size fluctuations. In this opinion article, we propose that the refractory density method (RDM), also known as age-structured population dynamics or quasi-renewal theory, yields a powerful theoretical framework to build rate-based models for mesoscopic neural populations from realistic neuron dynamics at the microscopic level. We review recent advances achieved by the RDM to obtain efficient population density equations for networks of generalized integrate-and-fire (GIF) neurons -- a class of neuron models that has been successfully fitted to various cell types. The theory not only predicts the nonstationary dynamics of large populations of neurons but also permits an extension to finite-size populations and a systematic reduction to low-dimensional rate dynamics. The new types of rate models will allow a re-examination of models of cortical computations under biological constraints.
Neural population equations such as neural mass or field models are widely used to study brain activity on a large scale. However, the relation of these models to the properties of single neurons is unclear. Here we derive an equation for several interacting populations at the mesoscopic scale starting from a microscopic model of randomly connected generalized integrate-and-fire neuron models. Each population consists of 50 -- 2000 neurons of the same type but different populations account for different neuron types. The stochastic population equations that we find reveal how spike-history effects in single-neuron dynamics such as refractoriness and adaptation interact with finite-size fluctuations on the population level. Efficient integration of the stochastic mesoscopic equations reproduces the statistical behavior of the population activities obtained from microscopic simulations of a full spiking neural network model. The theory describes nonlinear emergent dynamics like finite-size-induced stochastic transitions in multistable networks and synchronization in balanced networks of excitatory and inhibitory neurons. The mesoscopic equations are employed to rapidly simulate a model of a local cortical microcircuit consisting of eight neuron types. Our theory establishes a general framework for modeling finite-size neural population dynamics based on single cell and synapse parameters and offers an efficient approach to analyzing cortical circuits and computations.
We examine the effects of stochastic input currents on the firing behavior of two excitable neurons coupled with fast excitatory synapses. In such cells (models), typified by the quadratic integrate and fire model, mutual synaptic coupling can cause sustained firing or oscillatory behavior which is necessarily antiphase. Additive Gaussian white noise can transiently terminate the oscillations, hence destroying the stable limit cycle. Further application of the noise may return the system to spiking activity. In a particular noise range, the transition times between the oscillating and the resting state are strongly asymmetric. We numerically investigate an approximate basin of attraction, A, of the periodic orbit and use Markov process theory to explain the firing behavior in terms of the probability of escape of trajectories from A
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا