No Arabic abstract
Two-dimensional materials are emerging as a promising platform for ultrathin channels in field-effect transistors. To this aim, novel high-mobility semiconductors need to be found or engineered. While extrinsic mechanisms can in general be minimized by improving fabrication processes, the suppression of intrinsic scattering (driven e.g. by electron-phonon interactions) requires to modify the electronic or vibrational properties of the material. Since intervalley scattering critically affects mobilities, a powerful approach to enhance transport performance relies on engineering the valley structure. We show here the power of this strategy using uniaxial strain to lift degeneracies and suppress scattering into entire valleys, dramatically improving performance. This is shown in detail for arsenene, where a 2% strain stops scattering into 4 of the 6 valleys, and leads to a 600% increase in mobility. The mechanism is general and can be applied to many other materials, including in particular the isostructural antimonene and blue phosphorene.
One-dimensional (1D) quantum systems, which are predicted to exhibit novel states of matter in theory, have been elusive in experiment. Here we report a superlattice method of creating artificial 1D quantum stripes, which offers dimensional tunability from two- to one-dimensions. As a model system, we have fabricated 1D iridium (Ir) stripes using a-axis oriented superlattices of a relativistic Mott insulator Sr2IrO4 and a wide bandgap insulator LaSrGaO4, both of which are crystals with layered structure. In addition to the successful formation of 1D Ir-stripe structure, we have observed 1D quantum-confined electronic states from optical spectroscopy and resonant inelastic x-ray scattering. Since this 1D superlattice approach can be applied to a wide range of layered materials, it opens a new era of 1D science.
Symmetry breaking in two-dimensional layered materials plays a significant role in their macroscopic electrical, optical, magnetic and topological properties, including but not limited to spin-polarization effects, valley-contrasting physics, nonlinear Hall effects, nematic order, ferroelectricity, Bose-Einstein condensation and unconventional superconductivity. Engineering symmetry breaking of two-dimensional layered materials not only offers extraordinary opportunities to tune their physical properties, but also provides unprecedented possibilities to introduce completely new physics and technological innovations in electronics, photonics and optoelectronics. Indeed, over the past 15 years, a wide variety of physical, structural and chemical approaches have been developed to engineer symmetry breaking of two-dimensional layered materials. In this Review, we focus on the recent progresses on engineering the breaking of inversion, rotational, time reversal and spontaneous gauge symmetries in two-dimensional layered materials, and illustrate our perspectives on how these may lead to potential new physics and applications.
The relation between unusual Mexican-hat band dispersion, ferromagnetism and ferroelasticity is investigated using a combination of analytical, first-principles and phenomenological methods. The class of material with Mexican-hat band edge is studied using the $alpha$-SnO monolayer as a prototype. Such band edge causes a van Hove singularity diverging with $frac{1}{sqrt{E}}$, and in p-type material leads to spatial and/or time-reversal spontaneous symmetry breaking. We show that an unexpected multiferroic phase is obtained in a range of hole density for which the material presents ferromagnetism and ferroelasticity simultaneously.
Two-dimensional materials can be strongly influenced by their surroundings. A dielectric environment screens and reduces the Coulomb interaction between electrons in the two-dimensional material. Since the Coulomb interaction is responsible for the insulating state of Mott materials, dielectric screening provides direct access to the Mottness. Our many-body calculations reveal the spectroscopic fingerprints of Coulomb engineering. We demonstrate eV-scale changes to the position of the Hubbard bands and show a Coulomb engineered insulator-to-metal transition. Based on this theoretical analysis, we discuss prerequisites for an effective experimental realization of Coulomb engineering.
Low-dimensional materials differ from their bulk counterpart in many respects. In particular, the screening of the Coulomb interaction is strongly reduced, which can have important consequences such as the significant increase of exciton binding energies. In bulk materials the binding energy is used as an indicator in optical spectra to distinguish different kinds of excitons, but this is not possible in low-dimensional materials, where the binding energy is large and comparable in size for excitons of very different localization. Here we demonstrate that the exciton band structure, which can be accessed experimentally, instead provides a powerful way to identify the exciton character. By comparing the ab initio solution of the many-body Bethe-Salpeter equation for graphane and single-layer hexagonal BN, we draw a general picture of the exciton dispersion in two-dimensional materials, highlighting the different role played by the exchange electron-hole interaction and by the electronic band structure. Our interpretation is substantiated by a prediction for phosphorene.