Do you want to publish a course? Click here

Dynamic Solution Probability Acceptance within the Flower Pollination Algorithm for t-way Test Suite Generation

63   0   0.0 ( 0 )
 Added by Bestoun Ahmed Dr.
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Flower Pollination Algorithm (FPA) is the new breed of metaheuristic for the general optimization problem. In this paper, an improved algorithm based on Flower Pollination Algorithm (FPA), called imFPA, has been proposed. In imFPA, the static selection probability is replaced by the dynamic solution selection probability in order to enhance the diversification and intensification of the overall search process. Experimental adoptions on combinatorial t- way test suite generation problem (where t indicates the interaction strength) show that imFPA produces very competitive results as compared to existing strategies.

rate research

Read More

Combinatorial interaction testing is an important software testing technique that has seen lots of recent interest. It can reduce the number of test cases needed by considering interactions between combinations of input parameters. Empirical evidence shows that it effectively detects faults, in particular, for highly configurable software systems. In real-world software testing, the input variables may vary in how strongly they interact, variable strength combinatorial interaction testing (VS-CIT) can exploit this for higher effectiveness. The generation of variable strength test suites is a non-deterministic polynomial-time (NP) hard computational problem cite{BestounKamalFuzzy2017}. Research has shown that stochastic population-based algorithms such as particle swarm optimization (PSO) can be efficient compared to alternatives for VS-CIT problems. Nevertheless, they require detailed control for the exploitation and exploration trade-off to avoid premature convergence (i.e. being trapped in local optima) as well as to enhance the solution diversity. Here, we present a new variant of PSO based on Mamdani fuzzy inference system cite{Camastra2015,TSAKIRIDIS2017257,KHOSRAVANIAN2016280}, to permit adaptive selection of its global and local search operations. We detail the design of this combined algorithm and evaluate it through experiments on multiple synthetic and benchmark problems. We conclude that fuzzy adaptive selection of global and local search operations is, at least, feasible as it performs only second-best to a discrete variant of PSO, called DPSO. Concerning obtaining the best mean test suite size, the fuzzy adaptation even outperforms DPSO occasionally. We discuss the reasons behind this performance and outline relevant areas of future work.
Dynamic multiobjective optimisation has gained increasing attention in recent years. Test problems are of great importance in order to facilitate the development of advanced algorithms that can handle dynamic environments well. However, many of existing dynamic multiobjective test problems have not been rigorously constructed and analysed, which may induce some unexpected bias when they are used for algorithmic analysis. In this paper, some of these biases are identified after a review of widely used test problems. These include poor scalability of objectives and, more importantly, problematic overemphasis of static properties rather than dynamics making it difficult to draw accurate conclusion about the strengths and weaknesses of the algorithms studied. A diverse set of dynamics and features is then highlighted that a good test suite should have. We further develop a scalable continuous test suite, which includes a number of dynamics or features that have been rarely considered in literature but frequently occur in real life. It is demonstrated with empirical studies that the proposed test suite is more challenging to the dynamic multiobjective optimisation algorithms found in the literature. The test suite can also test algorithms in ways that existing test suites can not.
Theorem provers has been used extensively in software engineering for software testing or verification. However, software is now so large and complex that additional architecture is needed to guide theorem provers as they try to generate test suites. The SNAP test suite generator (introduced in this paper) combines the Z3 theorem prover with the following tactic: cluster some candidate tests, then search for valid tests by proposing small mutations to the cluster centroids. This technique effectively removes repeated structures in the tests since many repeated structures can be replaced with one centroid. In practice, SNAP is remarkably effective. For 27 real-world programs with up to half a million variables, SNAP found test suites which were 10 to 750 smaller times than those found by the prior state-of-the-art. Also, SNAP ran orders of magnitude faster and (unlike prior work) generated 100% valid tests.
With the ever-increasing use of web APIs in modern-day applications, it is becoming more important to test the system as a whole. In the last decade, tools and approaches have been proposed to automate the creation of system-level test cases for these APIs using evolutionary algorithms (EAs). One of the limiting factors of EAs is that the genetic operators (crossover and mutation) are fully randomized, potentially breaking promising patterns in the sequences of API requests discovered during the search. Breaking these patterns has a negative impact on the effectiveness of the test case generation process. To address this limitation, this paper proposes a new approach that uses agglomerative hierarchical clustering (AHC) to infer a linkage tree model, which captures, replicates, and preserves these patterns in new test cases. We evaluate our approach, called LT-MOSA, by performing an empirical study on 7 real-world benchmark applications w.r.t. branch coverage and real-fault detection capability. We also compare LT-MOSA with the two existing state-of-the-art white-box techniques (MIO, MOSA) for REST API testing. Our results show that LT-MOSA achieves a statistically significant increase in test target coverage (i.e., lines and branches) compared to MIO and MOSA in 4 and 5 out of 7 applications, respectively. Furthermore, LT-MOSA discovers 27 and 18 unique real-faults that are left undetected by MIO and MOSA, respectively.
222 - Varun Nayak , Daniel Kraus 2020
Test generation at the graphical user interface (GUI) level has proven to be an effective method to reveal faults. When doing so, a test generator has to repeatably decide what action to execute given the current state of the system under test (SUT). This problem of action selection usually involves random choice, which is often referred to as monkey testing. Some approaches leverage other techniques to improve the overall effectiveness, but only a few try to create human-like actions---or even entire action sequences. We have built a novel session-based recommender system that can guide test generation. This allows us to mimic past user behavior, reaching states that require complex interactions. We present preliminary results from an empirical study, where we use GitHub as the SUT. These results show that recommender systems appear to be well-suited for action selection, and that the approach can significantly contribute to the improvement of GUI-based test generation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا