No Arabic abstract
Target search with unmanned aerial vehicles (UAVs) is relevant problem to many scenarios, e.g., search and rescue (SaR). However, a key challenge is planning paths for maximal search efficiency given flight time constraints. To address this, we propose the Obstacle-aware Adaptive Informative Path Planning (OA-IPP) algorithm for target search in cluttered environments using UAVs. Our approach leverages a layered planning strategy using a Gaussian Process (GP)-based model of target occupancy to generate informative paths in continuous 3D space. Within this framework, we introduce an adaptive replanning scheme which allows us to trade off between information gain, field coverage, sensor performance, and collision avoidance for efficient target detection. Extensive simulations show that our OA-IPP method performs better than state-of-the-art planners, and we demonstrate its application in a realistic urban SaR scenario.
This paper addresses a generalization of the well known multi-agent path finding (MAPF) problem that optimizes multiple conflicting objectives simultaneously such as travel time and path risk. This generalization, referred to as multi-objective MAPF (MOMAPF), arises in several applications ranging from hazardous material transportation to construction site planning. In this paper, we present a new multi-objective conflict-based search (MO-CBS) approach that relies on a novel multi-objective safe interval path planning (MO-SIPP) algorithm for its low-level search. We first develop the MO-SIPP algorithm, show its properties and then embed it in MO-CBS. We present extensive numerical results to show that (1) there is an order of magnitude improvement in the average low level search time, and (2) a significant improvement in the success rates of finding the Pareto-optimal front can be obtained using the proposed approach in comparison with the state of the art. Finally, we also provide a case study to demonstrate the potential application of the proposed algorithms for construction site planning.
In this paper, we study the path planning for a cellular-connected unmanned aerial vehicle (UAV) to minimize its flying distance from given initial to final locations, while ensuring a target link quality in terms of the large-scale channel gain with each of its associated ground base stations (GBSs) during the flight. To this end, we propose the use of radio map that provides the information on the large-scale channel gains between each GBS and uniformly sampled locations on a three-dimensional (3D) grid over the region of interest, which are assumed to be time-invariant due to the generally static and large-size obstacles therein (e.g., buildings). Based on the given radio maps of the GBSs, we first obtain the optimal UAV path by solving an equivalent shortest path problem (SPP) in graph theory. To reduce the computation complexity of the optimal solution, we further propose a grid quantization method whereby the grid points in each GBSs radio map are more coarsely sampled by exploiting the spatial channel correlation over neighboring grids. Then, we solve the approximate SPP over the reduced-size radio map (graph) more efficiently. Numerical results show that the proposed solutions can effectively minimize the flying distance of the UAV subject to its communication quality constraint. Moreover, a flexible trade-off between performance and complexity can be achieved by adjusting the quantization ratio for the radio map.
Swarm robotic search is concerned with searching targets in unknown environments (e.g., for search and rescue or hazard localization), using a large number of collaborating simple mobile robots. In such applications, decentralized swarm systems are touted for their task/coverage scalability, time efficiency, and fault tolerance. To guide the behavior of such swarm systems, two broad classes of approaches are available, namely nature-inspired swarm heuristics and multi-robotic search methods. However, simultaneously offering computationally-efficient scalability and fundamental insights into the exhibited behavior (instead of a black-box behavior model), remains challenging under either of these two class of approaches. In this paper, we develop an important extension of the batch Bayesian search method for application to embodied swarm systems, searching in a physical 2D space. Key contributions lie in: 1) designing an acquisition function that not only balances exploration and exploitation across the swarm, but also allows modeling knowledge extraction over trajectories; and 2) developing its distributed implementation to allow asynchronous task inference and path planning by the swarm robots. The resulting collective informative path planning approach is tested on target search case studies of varying complexity, where the target produces a spatially varying (measurable) signal. Significantly superior performance, in terms of mission completion efficiency, is observed compared to exhaustive search and random walk baselines, along with favorable performance scalability with increasing swarm size.
In this work, our goal is to extend the existing search and rescue paradigm by allowing teams of autonomous unmanned aerial vehicles (UAVs) to collaborate effectively with human searchers on the ground. We derive a framework that includes a simulated lost person behavior model, as well as a human searcher behavior model that is informed by data collected from past search tasks. These models are used together to create a probabilistic heatmap of the lost persons position and anticipated searcher trajectories. We then use Gaussian processes with a Gibbs kernel to accurately model a limited field-of-view (FOV) sensor, e.g., thermal cameras, from which we derive a risk metric that drives UAV path optimization. Our framework finally computes a set of search paths for a team of UAVs to autonomously complement human searchers efforts.
We consider scenarios where a ground vehicle plans its path using data gathered by an aerial vehicle. In the aerial images, navigable areas of the scene may be occluded due to obstacles. Naively planning paths using aerial images may result in longer paths as a conservative planner may try to avoid regions that are occluded. We propose a modular, deep learning-based framework that allows the robot to predict the existence of navigable areas in the occluded regions. Specifically, we use image inpainting methods to fill in parts of the areas that are potentially occluded, which can then be semantically segmented to determine navigability. We use supervised neural networks for both modules. However, these predictions may be incorrect. Therefore, we extract uncertainty in these predictions and use a risk-aware approach that takes these uncertainties into account for path planning. We compare modules in our approach with non-learning-based approaches to show the efficacy of the proposed framework through photo-realistic simulations. The modular pipeline allows further improvement in path planning and deployment in different settings.