Do you want to publish a course? Click here

Shallow-water Magnetohydrodynamics for Westward Hotspots on Hot Jupiters

89   0   0.0 ( 0 )
 Added by A.W. Hindle
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Westward winds have now been inferred for two hot Jupiters (HJs): HAT-P-7b and CoRoT-2b. Such observations could be the result of a number of physical phenomena such as cloud asymmetries, asynchronous rotation, or magnetic fields. For the hotter HJs magnetic fields are an obvious candidate, though the actual mechanism remains poorly understood. Here we show that a strong toroidal magnetic field causes the planetary-scale equatorial magneto-Kelvin wave to structurally shear as it travels, resulting in westward tilting eddies, which drive a reversal of the equatorial winds from their eastward hydrodynamic counterparts. Using our simplified model we estimate that the equatorial winds of HAT-P-7b would reverse for a planetary dipole field strength $B_{text{dip},text{HAT-P-7b}} gtrsim 6 , mathrm{G} $, a result that is consistent with three-dimensional magnetohydrodynamic simulations and lies below typical surface dipole estimates of inflated HJs. The same analysis suggests the minimum dipole field strength required to reverse the winds of CoRoT-2b is $B_{text{dip},text{CoRoT-2b}} gtrsim 3 , mathrm{kG}$, which considerably exceeds estimates of the maximum surface dipole strength for HJs. We hence conclude that our magnetic wave-driven mechanism provides an explanation for wind reversals on HAT-P-7b; however, other physical phenomena provide more plausible explanations for wind reversals on CoRoT-2b.



rate research

Read More

73 - A. W. Hindle , P. J. Bushby , 2021
We use results of shallow-water magnetohydrodynamics (SWMHD) to place estimates on the minimum magnetic field strengths required to cause atmospheric wind variations (and therefore westward venturing hotspots) for a dataset of hot Jupiters (HJs), including HAT-P-7b, CoRoT-2b, Kepler-76, WASP-12b, and WASP-33b, on which westward hotspots have been observationally inferred. For HAT-P-7b and CoRoT-2b our estimates agree with past results; for Kepler-76b we find that the critical dipolar magnetic field strength, over which the observed wind variations can be explained by magnetism, lies between $4mbox{ G}$ and $19mbox{ G}$; for WASP-12b and WASP-33b westward hotspots can be explained by $1mbox{ G}$ and $2mbox{ G}$ dipolar fields respectively. Additionally, to guide future observational missions, we identify $61$ further HJs that are likely to exhibit magnetically-driven atmospheric wind variations and predict these variations are highly-likely in $sim 40$ of the hottest HJs.
The influence of a toroidal magnetic field on the dynamics of Rossby waves in a thin layer of ideal conductive fluid on a rotating sphere is studied in the shallow water magnetohydrodynamic approximation for the first time. Dispersion relations for magnetic Rossby waves are derived analytically in Cartesian and spherical coordinates. It is shown that the magnetic field causes the splitting of low order (long wavelength) Rossby waves into two different modes, here denoted fast and slow {em magnetic Rossby waves}. The high frequency mode (the fast magnetic Rossby mode) corresponds to an ordinary hydrodynamic Rossby wave slightly modified by the magnetic field, while the low frequency mode (the slow magnetic Rossby mode) has new and interesting properties since its frequency is significantly smaller than that of the same harmonics of pure Rossby and Alfv{e}n waves.
200 - Jason H. Steffen 2012
We present the results of a search for planetary companions orbiting near hot Jupiter planet candidates (Jupiter-size candidates with orbital periods near 3 days) identified in the Kepler data through its sixth quarter of science operations. Special emphasis is given to companions between the 2:1 interior and exterior mean-motion resonances. A photometric transit search excludes companions with sizes ranging from roughly 2/3 to 5 times the size of the Earth, depending upon the noise properties of the target star. A search for dynamically induced deviations from a constant period (transit timing variations or TTVs) also shows no significant signals. In contrast, comparison studies of warm Jupiters (with slightly larger orbits) and hot Neptune-size candidates do exhibit signatures of additional companions with these same tests. These differences between hot Jupiters and other planetary systems denote a distinctly different formation or dynamical history.
Data suggest that most rocky exoplanets with orbital period $p$ $<$ 100 d (hot rocky exoplanets) formed as gas-rich sub-Neptunes that subsequently lost most of their envelopes, but whether these rocky exoplanets still have atmospheres is unknown. We identify a pathway by which 1-1.7 $R_{Earth}$ (1-10 $M_{Earth}$) rocky exoplanets with orbital periods of 10-100 days can acquire long-lived 10-2000 bar atmospheres that are H$_2$O-dominated, with mean molecular weight $>$10. These atmospheres form during the planets evolution from sub-Neptunes into rocky exoplanets. H$_2$O that is made by reduction of iron oxides in the silicate magma is highly soluble in the magma, forming a dissolved reservoir that is protected from loss so long as the H$_2$-dominated atmosphere persists. The large size of the dissolved reservoir buffers the H$_2$O atmosphere against loss after the H$_2$ has dispersed. Within our model, a long-lived, water-dominated atmosphere is a common outcome for efficient interaction between a nebula-derived atmosphere (peak atmosphere mass fraction 0.1-0.6 wt%) and oxidized magma ($>$5 wt% FeO), followed by atmospheric loss. This idea predicts that most rocky planets that have orbital periods of 10-100 days and that have radii within 0.1-0.2 $R_{Earth}$ of the lower edge of the radius valley still retain H$_2$O atmospheres. This prediction is imminently testable with JWST and has implications for the interpretation of data for transiting super-Earths.
The observed low densities of gas giant planets with a high equilibrium temperature can be simulated in models when a fraction of the surface radiation is deposited deeper in the interior. Meanwhile migration theories suggest that hot Jupiters formed further away from their host-star and migrated inward. We incorporate disk migration in simulations of the evolving interior of hot Jupiters to determine whether migration has a long lasting effect on the inflation of planets. We quantify the difference between the radius of a migrated planet and the radius of a planet that formed in situ as the radius discrepancy. We remain agnostic about the physical mechanism behind interior heating, but assume it scales with the received stellar flux by a certain fraction. We find that the change in irradiation received from the host-star while the planet is migrating can affect the inflation and final radius of the planet. Models with a high fraction of energy deposited in the interior ( > 5%) show a significant radius discrepancy when the deposit is at higher pressures than P=1 bar. For a smaller fraction of 1%, there is no radius discrepancy for any deposit depth. We show that a uniform heating mechanism can cause different rates of inflation, depending on the migration history. If the forthcoming observations on mean densities and atmospheres of gas giants give a better indication of a potential heating mechanism, this could help to constrain the prior migration of such planets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا