No Arabic abstract
Product vacua with boundary states (PVBS) are cousins of the Heisenberg XXZ spin model and feature $n$ particle species on $mathbb Z^d$. The PVBS models were originally introduced as toy models for the classification of ground state phases. A crucial ingredient for this classification is the existence of a spectral gap above the ground state sector. In this work, we derive a spectral gap for PVBS models at arbitrary species number $n$ and in arbitrary dimension $d$ in the perturbative regime of small anisotropy parameters. Instead of using the more common martingale method, the proof verifies a finite-size criterion in the spirit of Knabe.
Topological invariants, such as the Chern number, characterise topological phases of matter. Here we provide a method to detect Chern numbers in systems with two distinct species of fermion, such as spins, orbitals or several atomic states. We analytically show that the Chern number can be decomposed as a sum of component specific winding numbers, which are themselves physically observable. We apply this method to two systems, the quantum spin Hall insulator and a staggered topological superconductor, and show that (spin) Chern numbers are accurately reproduced. The measurements required for constructing the component winding numbers also enable one to probe the entanglement spectrum with respect to component partitions. Our method is particularly suited to experiments with cold atoms in optical lattices where time-of-flight images can give direct access to the relevant observables.
We provide a short proof of the quantisation of the Hall conductance for gapped interacting quantum lattice systems on the two-dimensional torus. This is not new and should be seen as an adaptation of the proof of [1], simplified by making the stronger assumption that the Hamiltonian remains gapped when threading the torus with fluxes. We argue why this assumption is very plausible. The conductance is given by Berrys curvature and our key auxiliary result is that the curvature is asymptotically constant across the torus of fluxes.
We introduce a new matrix model representation for the generating function of simple Hurwitz numbers. We calculate the spectral curve of the model and the associated symplectic invariants developed in [Eynard-Orantin]. As an application, we prove the conjecture proposed by Bouchard and Marino, relating Hurwitz numbers to the spectral invariants of the Lambert curve exp(x)=y exp(-y).
We study three-body Schrodinger operators in one and two dimensions modelling an exciton interacting with a charged impurity. We consider certain classes of multiplicative interaction potentials proposed in the physics literature. We show that if the impurity charge is larger than some critical value, then three-body bound states cannot exist. Our spectral results are confirmed by variational numerical computations based on projecting on a finite dimensional subspace generated by a Gaussian basis.
We consider the Dubrovin--Frobenius manifold of rank $2$ whose genus expansion at a special point controls the enumeration of a higher genera generalization of the Catalan numbers, or, equivalently, the enumeration of maps on surfaces, ribbon graphs, Grothendiecks dessins denfants, strictly monotone Hurwitz numbers, or lattice points in the moduli spaces of curves. Liu, Zhang, and Zhou conjectured that the full partition function of this Dubrovin--Frobenius manifold is a tau-function of the extended nonlinear Schrodinger hierarchy, an extension of a particular rational reduction of the Kadomtsev--Petviashvili hierarchy. We prove a version of their conjecture specializing the Givental--Milanov method that allows to construct the Hirota quadratic equations for the partition function, and then deriving from them the Lax representation.