Do you want to publish a course? Click here

A matrix model for simple Hurwitz numbers, and topological recursion

161   0   0.0 ( 0 )
 Added by Eynard Bertrand
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce a new matrix model representation for the generating function of simple Hurwitz numbers. We calculate the spectral curve of the model and the associated symplectic invariants developed in [Eynard-Orantin]. As an application, we prove the conjecture proposed by Bouchard and Marino, relating Hurwitz numbers to the spectral invariants of the Lambert curve exp(x)=y exp(-y).



rate research

Read More

We introduce the notion of fully simple maps, which are maps with non self-intersecting disjoint boundaries. In contrast, maps where such a restriction is not imposed are called ordinary. We study in detail the combinatorics of fully simple maps with topology of a disk or a cylinder. We show that the generating series of simple disks is given by the functional inversion of the generating series of ordinary disks. We also obtain an elegant formula for cylinders. These relations reproduce the relation between moments and free cumulants established by Collins et al. math.OA/0606431, and implement the symplectic transformation $x leftrightarrow y$ on the spectral curve in the context of topological recursion. We conjecture that the generating series of fully simple maps are computed by the topological recursion after exchange of $x$ and $y$. We propose an argument to prove this statement conditionally to a mild version of symplectic invariance for the $1$-hermitian matrix model, which is believed to be true but has not been proved yet. Our argument relies on an (unconditional) matrix model interpretation of fully simple maps, via the formal hermitian matrix model with external field. We also deduce a universal relation between generating series of fully simple maps and of ordinary maps, which involves double monotone Hurwitz numbers. In particular, (ordinary) maps without internal faces -- which are generated by the Gaussian Unitary Ensemble -- and with boundary perimeters $(lambda_1,ldots,lambda_n)$ are strictly monotone double Hurwitz numbers with ramifications $lambda$ above $infty$ and $(2,ldots,2)$ above $0$. Combining with a recent result of Dubrovin et al. math-ph/1612.02333, this implies an ELSV-like formula for these Hurwitz numbers.
146 - B. Eynard 2014
This review is an extended version of the Seoul ICM 2014 proceedings.It is a short overview of the topological recursion, a relation appearing in the asymptotic expansion of many integrable systems and in enumerative problems. We recall how computing large size asymptotics in random matrices, has allowed to discover some fascinating and ubiquitous geometric invariants. Specializations of this method recover many classical invariants, like Gromov--Witten invariants, or knot polynomials (Jones, HOMFLY,...). In this short review, we give some examples, give definitions, and review some properties and applications of the formalism.
A study of the intersection theory on the moduli space of Riemann surfaces with boundary was recently initiated in a work of R. Pandharipande, J. P. Solomon and the third author, where they introduced open intersection numbers in genus 0. Their construction was later generalized to all genera by J. P. Solomon and the third author. In this paper we consider a refinement of the open intersection numbers by distinguishing contributions from surfaces with different numbers of boundary components, and we calculate all these numbers. We then construct a matrix model for the generating series of the refined open intersection numbers and conjecture that it is equivalent to the Kontsevich-Penner matrix model. An evidence for the conjecture is presented. Another refinement of the open intersection numbers, which describes the distribution of the boundary marked points on the boundary components, is also discussed.
75 - Bertrand Eynard 2019
We show that for a rather generic set of regular spectral curves, the Topological-Recursion invariants F_g grow at most like $O((beta g)! r^{-g}) $ with some $r>0$ and $betaleq 5$.
In this paper, we discuss the properties of the generating functions of spin Hurwitz numbers. In particular, for spin Hurwitz numbers with arbitrary ramification profiles, we construct the weighed sums which are given by Orlovs hypergeometric solutions of the 2-component BKP hierarchy. We derive the closed algebraic formulas for the correlation functions associated with these tau-functions, and under reasonable analytical assumptions we prove the loop equations (the blobbed topological recursion). Finally, we prove a version of topological recursion for the spin Hurwitz numbers with the spin completed cycles (a generalized version of the Giacchetto--Kramer--Lewanski conjecture).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا