Do you want to publish a course? Click here

Ternary Representation of Stochastic Change and the Origin of Entropy and Its Fluctuations

287   0   0.0 ( 0 )
 Added by Yu-Chen Cheng
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

A change in a stochastic system has three representations: Probabilistic, statistical, and informational: (i) is based on random variable $u(omega)totilde{u}(omega)$; this induces (ii) the probability distributions $F_u(x)to F_{tilde{u}}(x)$, $xinmathbb{R}^n$; and (iii) a change in the probability measure $mathbb{P}totilde{mathbb{P}}$ under the same observable $u(omega)$. In the informational representation a change is quantified by the Radon-Nikodym derivative $lnleft( frac{ d tilde{mathbb{P}}}{ dmathbb{P}}(omega)right)=-lnleft(frac{ d F_u}{ d F_{tilde{u}}}(x)right)$ when $x=u(omega)$. Substituting a random variable into its own density function creates a fluctuating entropy whose expectation has been given by Shannon. Informational representation of a deterministic transformation on $mathbb{R}^n$ reveals entropic and energetic terms, and the notions of configurational entropy of Boltzmann and Gibbs, and potential of mean force of Kirkwood. Mutual information arises for correlated $u(omega)$ and $tilde{u}(omega)$; and a nonequilibrium thermodynamic entropy balance equation is identified.



rate research

Read More

The existence of the typical set is key for the consistence of the ensemble formalization of statistical mechanics. We demonstrate here that the typical set can be defined and characterized for a general class of stochastic processes. This includes processes showing arbitrary path dependence, long range correlations or dynamic sampling spaces. We show how the typical set is characterized from general forms of entropy and how one can transform these general entropic forms into extensive functionals and, in some cases, to Shannon path entropy. The definition of the typical set and generalized forms of entropy for systems with arbitrary phase space growth may help to provide an ensemble picture for the thermodynamic paths of many systems away from equilibrium. In particular, we argue that a theory of expanding/shrinking phase spaces in processes displaying an intrinsic degree of stochasticity may lead to new frameworks for exploring the emergence of complexity and robust properties in open ended evolutionary systems and, in particular, of biological systems.
We present general arguments and construct a stress tensor operator for finite lattice spin models. The average value of this operator gives the Casimir force of the system close to the bulk critical temperature $T_c$. We verify our arguments via exact results for the force in the two-dimensional Ising model, $d$-dimensional Gaussian and mean spherical model with $2<d<4$. On the basis of these exact results and by Monte Carlo simulations for three-dimensional Ising, XY and Heisenberg models we demonstrate that the standard deviation of the Casimir force $F_C$ in a slab geometry confining a critical substance in-between is $k_b T D(T)(A/a^{d-1})^{1/2}$, where $A$ is the surface area of the plates, $a$ is the lattice spacing and $D(T)$ is a slowly varying nonuniversal function of the temperature $T$. The numerical calculations demonstrate that at the critical temperature $T_c$ the force possesses a Gaussian distribution centered at the mean value of the force $<F_C>=k_b T_c (d-1)Delta/(L/a)^{d}$, where $L$ is the distance between the plates and $Delta$ is the (universal) Casimir amplitude.
The quantum fluctuations of the entropy production for fermionic systems in the Landauer-Buttiker non-equilibrium steady state are investigated. The probability distribution, governing these fluctuations, is explicitly derived by means of quantum field theory methods and analysed in the zero frequency limit. It turns out that microscopic processes with positive, vanishing and negative entropy production occur in the system with non-vanishing probability. In spite of this fact, we show that all odd moments (in particular, the mean value of the entropy production) of the above distribution are non-negative. This result extends the second principle of thermodynamics to the quantum fluctuations of the entropy production in the Landauer-Buttiker state. The impact of the time reversal is also discussed.
The existence of a positive log-Sobolev constant implies a bound on the mixing time of a quantum dissipative evolution under the Markov approximation. For classical spin systems, such constant was proven to exist, under the assumption of a mixing condition in the Gibbs measure associated to their dynamics, via a quasi-factorization of the entropy in terms of the conditional entropy in some sub-$sigma$-algebras. In this work we analyze analogous quasi-factorization results in the quantum case. For that, we define the quantum conditional relative entropy and prove several quasi-factorization results for it. As an illustration of their potential, we use one of them to obtain a positive log-Sobolev constant for the heat-bath dynamics with product fixed point.
We investigate the nonequilibrium stationary states of systems consisting of chemical reactions among molecules of several chemical species. To this end we introduce and develop a stochastic formulation of nonequilibrium thermodynamics of chemical reaction systems based on a master equation defined on the space of microscopic chemical states, and on appropriate definitions of entropy and entropy production, The system is in contact with a heat reservoir, and is placed out of equilibrium by the contact with particle reservoirs. In our approach, the fluxes of various types, such as the heat and particle fluxes, play a fundamental role in characterizing the nonequilibrium chemical state. We show that the rate of entropy production in the stationary nonequilibrium state is a bilinear form in the affinities and the fluxes of reaction, which are expressed in terms of rate constants and transition rates, respectively. We also show how the description in terms of microscopic states can be reduced to a description in terms of the numbers of particles of each species, from which follows the chemical master equation. As an example, we calculate the rate of entropy production of the first and second Schlogl reaction models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا