Do you want to publish a course? Click here

Large Mpemba-like effect in a gas of inelastic rough hard spheres

84   0   0.0 ( 0 )
 Added by Antonio Prados
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the emergence of a giant Mpemba effect in the uniformly heated gas of inelastic rough hard spheres: The initially hotter sample may cool sooner than the colder one, even when the initial temperatures differ by more than one order of magnitude. In order to understand this behavior, it suffices to consider the simplest Maxwellian approximation for the velocity distribution in a kinetic approach. The largeness of the effect stems from the fact that the rotational and translational temperatures, which obey two coupled evolution equations, are comparable. Our theoretical predictions agree very well with molecular dynamics and direct simulation Monte Carlo data.



rate research

Read More

The transport coefficients for dilute granular gases of inelastic and rough hard disks or spheres with constant coefficients of normal ($alpha$) and tangential ($beta$) restitution are obtained in a unified framework as functions of the number of translational ($d_t$) and rotational ($d_r$) degrees of freedom. The derivation is carried out by means of the Chapman--Enskog method with a Sonine-like approximation in which, in contrast to previous approaches, the reference distribution function for angular velocities does not need to be specified. The well-known case of purely smooth $d$-dimensional particles is recovered by setting $d_t=d$ and formally taking the limit $d_rto 0$. In addition, previous results [G. M. Kremer, A. Santos, and V. Garzo, Phys. Rev. E 90, 022205 (2014)] for hard spheres are reobtained by taking $d_t=d_r=3$, while novel results for hard-disk gases are derived with the choice $d_t=2$, $d_r=1$. The singular quasismooth limit ($betato -1$) and the conservative Pidducks gas ($alpha=beta=1$) are also obtained and discussed.
Conditions for the stability under linear perturbations around the homogeneous cooling state are studied for dilute granular gases of inelastic and rough hard disks or spheres with constant coefficients of normal ($alpha$) and tangential ($beta$) restitution. After a formally exact linear stability analysis of the Navier--Stokes--Fourier hydrodynamic equations in terms of the translational ($d_t$) and rotational ($d_r$) degrees of freedom, the transport coefficients derived in the companion paper [A. Megias and A. Santos, Hydrodynamics of granular gases of inelastic and rough hard disks or spheres. I. Transport coefficients, Phys. Rev. E 104, 034901 (2021)] are employed. Known results for hard spheres [V. Garzo, A. Santos, and G. M. Kremer, Phys. Rev. E 97, 052901 (2018)] are recovered by setting $d_t=d_r=3$, while novel results for hard disks ($d_t=2$, $d_r=1$) are obtained. In the latter case, a high-inelasticity peculiar region in the $(alpha,beta)$ parameter space is found, inside which the critical wave number associated with the longitudinal modes diverges. Comparison with event-driven molecular dynamics simulations for dilute systems of hard disks at $alpha=0.2$ shows that this theoretical region of absolute instability may be an artifact of the extrapolation to high inelasticity of the approximations made in the derivation of the transport coefficients, although it signals a shrinking of the conditions for stability. In the case of moderate inelasticity ($alpha=0.7$), however, a good agreement between the theoretical predictions and the simulation results is found.
The smallest maximum kissing-number Voronoi polyhedron of 3d spheres is the icosahedron and the tetrahedron is the smallest volume that can show up in Delaunay tessalation. No periodic lattice is consistent with either and hence these dense packings are geometrically frustrated. Because icosahedra can be assembled from almost perfect tetrahedra, the terms icosahedral and polytetrahedral packing are often used interchangeably, which leaves the true origin of geometric frustration unclear. Here we report a computational study of freezing of 4d hard spheres, where the densest Voronoi cluster is compatible with the symmetry of the densest crystal, while polytetrahedral order is not. We observe that, under otherwise comparable conditions, crystal nucleation in 4d is less facile than in 3d. This suggest that it is the geometrical frustration of polytetrahedral structures that inhibits crystallization.
We report on a large scale computer simulation study of crystal nucleation in hard spheres. Through a combined analysis of real and reciprocal space data, a picture of a two-step crystallization process is supported: First dense, amorphous clusters form which then act as precursors for the nucleation of well-ordered crystallites. This kind of crystallization process has been previously observed in systems that interact via potentials that have an attractive as well as a repulsive part, most prominently in protein solutions. In this context the effect has been attributed to the presence of metastable fluid-fluid demixing. Our simulations, however, show that a purely repulsive system (that has no metastable fluid-fluid coexistence) crystallizes via the same mechanism.
Non-Newtonian transport properties of an inertial suspension of inelastic rough hard spheres under simple shear flow are determined from the Boltzmann kinetic equation. The influence of the interstitial gas on rough hard spheres is modeled via a Fokker-Planck generalized equation for rotating spheres accounting for the coupling of both the translational and rotational degrees of freedom of grains with the background viscous gas. The generalized Fokker-Planck term is the sum of two ordinary Fokker-Planck differential operators in linear $mathbf{v}$ and angular $boldsymbol{omega}$ velocity space. As usual, each Fokker-Planck operator is constituted by a drag force term (proportional to $mathbf{v}$ and/or $boldsymbol{omega}$) plus a stochastic Langevin term defined in terms of the background temperature $T_text{ex}$. The Boltzmann equation is solved by two different but complementary approaches: (i) by means of Grads moment method, and (ii) by using a Bhatnagar-Gross-Krook (BGK)-type kinetic model adapted to inelastic rough hard spheres. As occurs in the case of emph{smooth} inelastic hard spheres, our results show that both the temperature and the non-Newtonian viscosity increase drastically with increasing the shear rate (discontinuous shear thickening effect) while the fourth-degree velocity moments also exhibit an $S$-shape. In particular, while high levels of roughness may slightly attenuate the jump of the viscosity in comparison to the smooth case, the opposite happens for the rotational temperature. As an application of these results, a linear stability analysis of the steady simple shear flow solution is also carried out showing that there are regions of the parameter space where the steady solution becomes linearly unstable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا