No Arabic abstract
The smallest maximum kissing-number Voronoi polyhedron of 3d spheres is the icosahedron and the tetrahedron is the smallest volume that can show up in Delaunay tessalation. No periodic lattice is consistent with either and hence these dense packings are geometrically frustrated. Because icosahedra can be assembled from almost perfect tetrahedra, the terms icosahedral and polytetrahedral packing are often used interchangeably, which leaves the true origin of geometric frustration unclear. Here we report a computational study of freezing of 4d hard spheres, where the densest Voronoi cluster is compatible with the symmetry of the densest crystal, while polytetrahedral order is not. We observe that, under otherwise comparable conditions, crystal nucleation in 4d is less facile than in 3d. This suggest that it is the geometrical frustration of polytetrahedral structures that inhibits crystallization.
A new Monte Carlo approach is proposed to investigate the fluid-solid phase transition of the polydisperse system. By using the extended ensemble, a reversible path was constructed to link the monodisperse and corresponding polydisperse system. Once the fluid-solid coexistence point of the monodisperse system is known, the fluid-solid coexistence point of the polydisperse system can be obtained from the simulation. The validity of the method is checked by the simulation of the fluid-solid phase transition of a size-polydisperse hard sphere colloid. The results are in agreement with the previous studies.
We report on a large scale computer simulation study of crystal nucleation in hard spheres. Through a combined analysis of real and reciprocal space data, a picture of a two-step crystallization process is supported: First dense, amorphous clusters form which then act as precursors for the nucleation of well-ordered crystallites. This kind of crystallization process has been previously observed in systems that interact via potentials that have an attractive as well as a repulsive part, most prominently in protein solutions. In this context the effect has been attributed to the presence of metastable fluid-fluid demixing. Our simulations, however, show that a purely repulsive system (that has no metastable fluid-fluid coexistence) crystallizes via the same mechanism.
We report the emergence of a giant Mpemba effect in the uniformly heated gas of inelastic rough hard spheres: The initially hotter sample may cool sooner than the colder one, even when the initial temperatures differ by more than one order of magnitude. In order to understand this behavior, it suffices to consider the simplest Maxwellian approximation for the velocity distribution in a kinetic approach. The largeness of the effect stems from the fact that the rotational and translational temperatures, which obey two coupled evolution equations, are comparable. Our theoretical predictions agree very well with molecular dynamics and direct simulation Monte Carlo data.
Sticky hard spheres, i.e., hard particles decorated with a short-ranged attractive interaction potential, constitute a relatively simple model with highly non-trivial glassy dynamics. The mode-coupling theory of the glass transition (MCT) offers a qualitative account of the complex reentrant dynamics of sticky hard spheres, but the predicted glass transition point is notoriously underestimated. Here we apply an improved first-principles-based theory, referred to as generalized mode-coupling theory (GMCT), to sticky hard spheres. This theoretical framework seeks to go beyond MCT by hierarchically expanding the dynamics in higher-order density correlation functions -- an approach that may become exact if sufficiently many correlations are taken into account. We predict the phase diagrams from the first few levels of the GMCT hierarchy and the dynamics-related critical exponents, all of which are much closer to the empirical observations than MCT. Notably, the prominent reentrant glassy dynamics, the glass-glass transition, and the higher-order bifurcation singularity classes ($A_3$ and $A_4$) of sticky hard spheres are found to be preserved within GMCT at arbitrary order. Moreover, we demonstrate that when the hierarchical order of GMCT increases, the effect of the short-ranged attractive interactions becomes more evident in the dynamics. This implies that GMCT is more sensitive to subtle microstructural differences than MCT, and that the framework provides a promising first-principles approach to systematically go beyond the MCT regime.
The transport coefficients for dilute granular gases of inelastic and rough hard disks or spheres with constant coefficients of normal ($alpha$) and tangential ($beta$) restitution are obtained in a unified framework as functions of the number of translational ($d_t$) and rotational ($d_r$) degrees of freedom. The derivation is carried out by means of the Chapman--Enskog method with a Sonine-like approximation in which, in contrast to previous approaches, the reference distribution function for angular velocities does not need to be specified. The well-known case of purely smooth $d$-dimensional particles is recovered by setting $d_t=d$ and formally taking the limit $d_rto 0$. In addition, previous results [G. M. Kremer, A. Santos, and V. Garzo, Phys. Rev. E 90, 022205 (2014)] for hard spheres are reobtained by taking $d_t=d_r=3$, while novel results for hard-disk gases are derived with the choice $d_t=2$, $d_r=1$. The singular quasismooth limit ($betato -1$) and the conservative Pidducks gas ($alpha=beta=1$) are also obtained and discussed.