No Arabic abstract
To most existing non-equilibrium theories, the modeling of non-isothermal processes was a hard task. Intrinsic difficulties involved the non-equilibrium temperature, the coexistence of conserved energy and dissipative entropy, etc. In this paper, by taking the non-isothermal flow of nematic liquid crystals as a typical example, we illustrated that thermodynamically consistent models in either vectorial or tensorial forms could be constructed within the framework of Conservation-Dissipation Formalism (CDF). And the classical isothermal Ericksen-Leslie model and Qian-Sheng model were shown to be special cases of our new vectorial and tensorial models in the isothermal, incompressible and stationary limit. Most importantly, from above examples, it was learnt that mathematical modeling based on CDF could easily solve the issues relating with non-isothermal situations in a systematic way. The first and second laws of thermodynamics were satisfied simultaneously. The non-equilibrium temperature was defined self-consistently through the partial derivative of entropy function. Relaxation-type constitutive relations were constructed, which gave rise to the classical linear constitutive relations, like Newtons law and Fouriers law, in stationary limits. Therefore, CDF was expected to have a broad scope of applications in soft matter physics, especially under the complicated situations, such as non-isothermal, compressible and nanoscale systems.
In this paper, we proved that by choosing the proper variational function and variables, the variational approach proposed by M. Doi in soft matter physics was equivalent to the Conservation-Dissipation Formalism. To illustrate the correspondence between these two theories, several novel examples in soft matter physics, including particle diffusion in dilute solutions, polymer phase separation dynamics and nematic liquid crystal flows, were carefully examined. Based on our work, a deep connection among the generalized Gibbs relation, the second law of thermodynamics and the variational principle in non-equilibrium thermodynamics was revealed.
We analyze the interaction with uniform external fields of nematic liquid crystals within a recent generalized free-energy posited by Virga and falling in the class of quartic functionals in the spatial gradients of the nematic director. We review some known interesting solutions, i. e., uniform heliconical structures, which correspond to the so-called twist-bend nematic phase and we also study the transition between this phase and the standard uniform nematic one. Moreover, we find liquid crystal configurations, which closely resemble some novel, experimentally detected, structures called Skyrmion Tubes. Skyrmion Tubes are characterized by a localized cylindrically-symmetric pattern surrounded by either twist-bend or uniform nematic phase. We study the equilibrium differential equations and find numerical solutions and analytical approximations.
We present in this paper a detailed analysis of the flexoelectric instability of a planar nematic layer in the presence of an alternating electric field (frequency $omega$), which leads to stripe patterns (flexodomains) in the plane of the layer. This equilibrium transition is governed by the free energy of the nematic which describes the elasticity with respects to the orientational degrees of freedom supplemented by an electric part. Surprisingly the limit $omega to 0$ is highly singular. In distinct contrast to the dc-case, where the patterns are stationary and time-independent, they appear at finite, small $omega$ periodically in time as sudden bursts. Flexodomains are in competition with the intensively studied electro-hydrodynamic instability in nematics, which presents a non-equilibrium dissipative transition. It will be demonstrated that $omega$ is a very convenient control parameter to tune between flexodomains and convection patterns, which are clearly distinguished by the orientation of their stripes.
We investigate a number of complex patterns driven by the electro-convection instability in a planarly aligned layer of a nematic liquid crystal. They are traced back to various secondary instabilities of the ideal roll patterns bifurcating at onset of convection, whereby the basic nemato-hydrodynamic equations are solved by common Galerkin expansion methods. Alternatively these equations are systematically approximated by a set of coupled amplitude equations. They describe slow modulations of the convection roll amplitudes, which are coupled to a flow field component with finite vorticity perpendicular to the layer and to a quasi-homogeneous in-plane rotation of the director. It is demonstrated that the Galerkin stability diagram of the convection rolls is well reproduced by the corresponding one based on the amplitude equations. The main purpose of the paper is, however, to demonstrate that their direct numerical simulations match surprisingly well new experiments, which serves as a convincing test of our theoretical approach.
The director configuration of disclination lines in nematic liquid crystals in the presence of an external magnetic field is evaluated. Our method is a combination of a polynomial expansion for the director and of further analytical approximations which are tested against a numerical shooting method. The results are particularly simple when the elastic constants are equal, but we discuss the general case of elastic anisotropy. The director field is continuous everywhere apart from a straight line segment whose length depends on the value of the magnetic field. This indicates the possibility of an elongated defect core for disclination lines in nematics due to an external magnetic field.