No Arabic abstract
Recent work has established Moreau-Yosida regularization as a mathematical tool to achieve rigorous functional differentiability in density-functional theory. In this article, we extend this tool to paramagnetic current-density-functional theory, the most common density-functional framework for magnetic field effects. The extension includes a well-defined Kohn-Sham iteration scheme with a partial convergence result. To this end, we rely on a formulation of Moreau-Yosida regularization for reflexive and strictly convex function spaces. The optimal $L^p$-characterization of the paramagnetic current density $L^1cap L^{3/2}$ is derived from the $N$-representability conditions. A crucial prerequisite for the convex formulation of paramagnetic current-density-functional theory, termed compatibility between function spaces for the particle density and the current density, is pointed out and analyzed. Several results about compatible function spaces are given, including their recursive construction. The regularized, exact functionals are calculated numerically for a Kohn-Sham iteration on a quantum ring, illustrating their performance for different regularization parameters.
We construct exact Kohn-Sham potentials for the ensemble density-functional theory (EDFT) from the ground and excited states of helium. The exchange-correlation (XC) potential is compared with the quasi-local-density approximation and both single determinant and symmetry eigenstate ghost-corrected exact exchange approximations. Symmetry eigenstate Hartree-exchange recovers distinctive features of the exact XC potential and is used to calculate the correlation potential. Unlike the exact case, excitation energies calculated from these approximations depend on ensemble weight, and it is shown that only the symmetry eigenstate method produces an ensemble derivative discontinuity. Differences in asymptotic and near-ground-state behavior of exact and approximate XC potentials are discussed in the context of producing accurate optical gaps.
In numerical computations of response properties of electronic systems, the standard model is Kohn-Sham density functional theory (KS-DFT). Here we investigate the mathematical status of the simplest class of excitations in KS-DFT, HOMO-LUMO excitations. We show using concentration-compactness arguments that such excitations, i.e. excited states of the Kohn-Sham Hamiltonian, exist for $Z>N$, where $Z$ is the total nuclear charge and $N$ is the number of electrons. The result applies under realistic assumptions on the exchange-correlation functional, which we verify explicitly for the widely used PZ81 and PW92 functionals. By contrast, and somewhat surprisingly, we find using a method of Glaser, Martin, Grosse, and Thirring cite{glaser1976} that in case of the hydrogen and helium atoms, excited states do not exist in the neutral case $Z=N$ when the self-consistent KS ground state density is replaced by a realistic but easier to analyze approximation (in case of hydrogen, the true Schr{o}dinger ground state density). Implications for interpreting minus the HOMO eigenvalue as an approximation to the ionization potential are indicated.
We develop a density functional treatment of non-interacting abelian anyons, which is capable, in principle, of dealing with a system of a large number of anyons in an external potential. Comparison with exact results for few particles shows that the model captures the behavior qualitatively and semi-quantitatively, especially in the vicinity of the fermionic statistics. We then study anyons with statistics parameter $1+1/n$, which are thought to condense into a superconducting state. An indication of the superconducting behavior is the mean-field result that, for uniform density systems, the ground state energy increases under the application of an external magnetic field independent of its direction. Our density-functional-theory based analysis does not find that to be the case for finite systems of anyons, which can accommodate a weak external magnetic field through density transfer between the bulk and the boundary rather than through transitions across effective Landau levels, but the Meissner repulsion of the external magnetic field is recovered in the thermodynamic limit as the effect of the boundary becomes negligible. We also consider the quantum Hall effect of anyons, and show that its topological properties, such as the charge and statistics of the excitations and the quantized Hall conductance, arise in a self-consistent fashion.
We present a rigorous formulation of generalized Kohn-Sham density-functional theory. This provides a straightforward Kohn-Sham description of many-body systems based not only on particle-density but also on any other observable. We illustrate the formalism for the case of a particle-density based description of a nonrelativistic many-electron system. We obtain a simple diagrammatic expansion of the exchange-correlation functional in terms of Kohn-Sham single-particle orbitals and energies; develop systematic Kohn-Sham formulation for one-electron propagators and many-body excitation energies. This work is ideally suited for practical applications and provides a rigorous basis for a systematic development of the existing body of first-principles calculations in a controllable fashion.
Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the $varphi^4$ theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.