This paper introduces a new method to solve the problem of the approximation of the diagonal for face-coherent families of polytopes. We recover the classical cases of the simplices and the cubes and we solve it for the associahedra, also known as Stasheff polytopes. We show that it satisfies an easy-to-state cellular formula. For the first time, we endow a family of realizations of the associahedra (the Loday realizations) with a topological and cellular operad structure; it is shown to be compatible with the diagonal maps.
We provide a new combinatorial approach to studying the collection of N-infinity-operads in G-equivariant homotopy theory for G a finite cyclic group. In particular, we show that for G the cyclic group of order p^n the natural order on the collection of N-infinity-operads stands in bijection with the poset structure of the (n+1)-associahedron. We further provide a lower bound for the number of possible N-infinity-operads for any finite cyclic group G.
Let $G$ be a discrete group. We prove that the category of $G$-posets admits a model structure that is Quillen equivalent to the standard model structure on $G$-spaces. As is already true nonequivariantly, the three classes of maps defining the model structure are not well understood calculationally. To illustrate, we exhibit some examples of cofibrant and fibrant posets and an example of a non-cofibrant finite poset.
The zero locus of a generic section of a vector bundle over a manifold defines a submanifold. A classical problem in geometry asks to realise a specified submanifold in this way. We study two cases; a point in a generalised flag manifold and the diagonal in the direct product of two copies of a generalised flag manifold. These cases are particularly interesting since they are related to ordinary and equivariant Schubert polynomials respectively.
Multiparameter persistence is a natural extension of the well-known persistent homology, which has attracted a lot of interest. However, there are major theoretical obstacles preventing the full development of this promising theory. In this paper we consider the interesting special case of multiparameter persistence in zero dimensions which can be regarded as a form of multiparameter clustering. In particular, we consider the multiparameter persistence modules of the zero-dimensional homology of filtered topological spaces when they are finitely generated. Under certain assumptions, we characterize such modules and study their decompositions. In particular we identify a natural class of representations that decompose and can be extended back to form zero-dimensional multiparameter persistence modules. Our study of this set of representations concludes that despite the restrictions, there are still infinitely many classes of indecomposables in this set.
Various concepts and constructions in homotopy theory have been defined in the digital setting. Although there have been several attempts at a definition of a fibration in the digital setting, robust examples of these digital fibrations are few and far between. In this paper, we develop a digital Hopf fibration within the category of tolerance spaces. By widening our category to that of tolerance spaces, we are able to give a construction of this digital Hopf fibration which mimics the smooth setting.