Do you want to publish a course? Click here

Understanding the Interactions of Workloads and DRAM Types: A Comprehensive Experimental Study

73   0   0.0 ( 0 )
 Added by Saugata Ghose
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

It has become increasingly difficult to understand the complex interaction between modern applications and main memory, composed of DRAM chips. Manufacturers are now selling and proposing many different types of DRAM, with each DRAM type catering to different needs (e.g., high throughput, low power, high memory density). At the same time, the memory access patterns of prevalent and emerging workloads are rapidly diverging, as these applications manipulate larger data sets in very different ways. As a result, the combined DRAM-workload behavior is often difficult to intuitively determine today, which can hinder memory optimizations in both hardware and software. In this work, we identify important families of workloads, as well as prevalent types of DRAM chips, and rigorously analyze the combined DRAM--workload behavior. To this end, we perform a comprehensive experimental study of the interaction between nine different DRAM types and 115 modern applications and multiprogrammed workloads. We draw 12 key observations from our characterization, enabled in part by our development of new metrics that take into account contention between memory requests due to hardware design. Notably, we find that (1) newer DRAM types such as DDR4 and HMC often do not outperform older types such as DDR3, due to higher access latencies and, in the case of HMC, poor exploitation of locality; (2) there is no single DRAM type that can cater to all components of a heterogeneous system (e.g., GDDR5 significantly outperforms other memories for multimedia acceleration, while HMC significantly outperforms other memories for network acceleration); and (3) there is still a strong need to lower DRAM latency, but unfortunately the current design trend of commodity DRAM is toward higher latencies to obtain other benefits. We hope that the trends we identify can drive optimizations in both hardware and software design.



rate research

Read More

81 - Kevin K. Chang 2017
Over the past two decades, the storage capacity and access bandwidth of main memory have improved tremendously, by 128x and 20x, respectively. These improvements are mainly due to the continuous technology scaling of DRAM (dynamic random-access memory), which has been used as the physical substrate for main memory. In stark contrast with capacity and bandwidth, DRAM latency has remained almost constant, reducing by only 1.3x in the same time frame. Therefore, long DRAM latency continues to be a critical performance bottleneck in modern systems. Increasing core counts, and the emergence of increasingly more data-intensive and latency-critical applications further stress the importance of providing low-latency memory access. In this dissertation, we identify three main problems that contribute significantly to long latency of DRAM accesses. To address these problems, we present a series of new techniques. Our new techniques significantly improve both system performance and energy efficiency. We also examine the critical relationship between supply voltage and latency in modern DRAM chips and develop new mechanisms that exploit this voltage-latency trade-off to improve energy efficiency. The key conclusion of this dissertation is that augmenting DRAM architecture with simple and low-cost features, and developing a better understanding of manufactured DRAM chips together lead to significant memory latency reduction as well as energy efficiency improvement. We hope and believe that the proposed architectural techniques and the detailed experimental data and observations on real commodity DRAM chips presented in this dissertation will enable development of other new mechanisms to improve the performance, energy efficiency, or reliability of future memory systems.
The complexity and diversity of big data and AI workloads make understanding them difficult and challenging. This paper proposes a new approach to modelling and characterizing big data and AI workloads. We consider each big data and AI workload as a pipeline of one or more classes of units of computation performed on different initial or intermediate data inputs. Each class of unit of computation captures the common requirements while being reasonably divorced from individual implementations, and hence we call it a data motif. For the first time, among a wide variety of big data and AI workloads, we identify eight data motifs that take up most of the run time of those workloads, including Matrix, Sampling, Logic, Transform, Set, Graph, Sort and Statistic. We implement the eight data motifs on different software stacks as the micro benchmarks of an open-source big data and AI benchmark suite ---BigDataBench 4.0 (publicly available from http://prof.ict.ac.cn/BigDataBench), and perform comprehensive characterization of those data motifs from perspective of data sizes, types, sources, and patterns as a lens towards fully understanding big data and AI workloads. We believe the eight data motifs are promising abstractions and tools for not only big data and AI benchmarking, but also domain-specific hardware and software co-design.
In order to shed more light on how RowHammer affects modern and future devices at the circuit-level, we first present an experimental characterization of RowHammer on 1580 DRAM chips (408x DDR3, 652x DDR4, and 520x LPDDR4) from 300 DRAM modules (60x DDR3, 110x DDR4, and 130x LPDDR4) with RowHammer protection mechanisms disabled, spanning multiple different technology nodes from across each of the three major DRAM manufacturers. Our studies definitively show that newer DRAM chips are more vulnerable to RowHammer: as device feature size reduces, the number of activations needed to induce a RowHammer bit flip also reduces, to as few as 9.6k (4.8k to two rows each) in the most vulnerable chip we tested. We evaluate five state-of-the-art RowHammer mitigation mechanisms using cycle-accurate simulation in the context of real data taken from our chips to study how the mitigation mechanisms scale with chip vulnerability. We find that existing mechanisms either are not scalable or suffer from prohibitively large performance overheads in projected future devices given our observed trends of RowHammer vulnerability. Thus, it is critical to research more effective solutions to RowHammer.
This paper summarizes our work on experimental characterization and analysis of reduced-voltage operation in modern DRAM chips, which was published in SIGMETRICS 2017, and examines the works significance and future potential. We take a comprehensive approach to understanding and exploiting the latency and reliability characteristics of modern DRAM when the DRAM supply voltage is lowered below the nominal voltage level specified by DRAM standards. We perform an experimental study of 124 real DDR3L (low-voltage) DRAM chips manufactured recently by three major DRAM vendors. We find that reducing the supply voltage below a certain point introduces bit errors in the data, and we comprehensively characterize the behavior of these errors. We discover that these errors can be avoided by increasing the latency of three major DRAM operations (activation, restoration, and precharge). We perform detailed DRAM circuit simulations to validate and explain our experimental findings. We also characterize the various relationships between reduced supply voltage and error locations, stored data patterns, DRAM temperature, and data retention. Based on our observations, we propose a new DRAM energy reduction mechanism, called Voltron. The key idea of Voltron is to use a performance model to determine by how much we can reduce the supply voltage without introducing errors and without exceeding a user-specified threshold for performance loss. Our evaluations show that Voltron reduces the average DRAM and system energy consumption by 10.5% and 7.3%, respectively, while limiting the average system performance loss to only 1.8%, for a variety of memory-intensive quad-core workloads. We also show that Voltron significantly outperforms prior dynamic voltage and frequency scaling mechanisms for DRAM.
DRAM is the prevalent main memory technology, but its long access latency can limit the performance of many workloads. Although prior works provide DRAM designs that reduce DRAM access latency, their reduced storage capacities hinder the performance of workloads that need large memory capacity. Because the capacity-latency trade-off is fixed at design time, previous works cannot achieve maximum performance under very different and dynamic workload demands. This paper proposes Capacity-Latency-Reconfigurable DRAM (CLR-DRAM), a new DRAM architecture that enables dynamic capacity-latency trade-off at low cost. CLR-DRAM allows dynamic reconfiguration of any DRAM row to switch between two operating modes: 1) max-capacity mode, where every DRAM cell operates individually to achieve approximately the same storage density as a density-optimized commodity DRAM chip and 2) high-performance mode, where two adjacent DRAM cells in a DRAM row and their sense amplifiers are coupled to operate as a single low-latency logical cell driven by a single logical sense amplifier. We implement CLR-DRAM by adding isolation transistors in each DRAM subarray. Our evaluations show that CLR-DRAM can improve system performance and DRAM energy consumption by 18.6% and 29.7% on average with four-core multiprogrammed workloads. We believe that CLR-DRAM opens new research directions for a system to adapt to the diverse and dynamically changing memory capacity and access latency demands of workloads.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا