Do you want to publish a course? Click here

A new look into putative duplicity and pulsations of the Be star $beta$ CMi

67   0   0.0 ( 0 )
 Added by Petr Harmanec
 Publication date 2019
  fields Physics
and research's language is English
 Authors P. Harmanec




Ask ChatGPT about the research

Bright Be star beta CMi has been identified as a non-radial pulsator on the basis of space photometry with the MOST satellite and also as a single-line spectroscopic binary with a period of 170.4 d. The purpose of this study is to re-examine both these findings, using numerous electronic spectra from the Dominion Astrophysical Observatory, Ondv{r}ejov Observatory, Universitatssterwarte Bochum, archival electronic spectra from several observatories, and also the original MOST satellite photometry. We measured the radial velocity of the outer wings of the double Halpha emission in all spectra at our disposal and were not able to confirm significant radial-velocity changes. We also discuss the problems related to the detection of very small radial-velocity changes and conclude that while it is still possible that the star is a spectroscopic binary, there is currently no convincing proof of it from the radial-velocity measurements. Wavelet analysis of the MOST photometry shows that there is only one persistent (and perhaps slightly variable) periodicity of 0.617 d of the light variations, with a double-wave light curve, all other short periods having only transient character. Our suggestion that this dominant period is the stars rotational period agrees with the estimated stellar radius, projected rotational velocity and with the orbital inclination derived by two teams of investigators. New spectral observations obtained in the whole-night series would be needed to find out whether some possibly real, very small radial-velocity changes cannot in fact be due to rapid line-profile changes.



rate research

Read More

The viscous decretion disk (VDD) model is able to explain most of the currently observable properties of the circumstellar disks of Be stars. However, more stringent tests, focusing on reproducing multitechnique observations of individual targets via physical modeling, are needed to study the predictions of the VDD model under specific circumstances. In the case of nearby, bright Be star $beta$ CMi, these circumstances are a very stable low-density disk and a late-type (B8Ve) central star. The aim is to test the VDD model thoroughly, exploiting the full diagnostic potential of individual types of observations, in particular, to constrain the poorly known structure of the outer disk if possible, and to test truncation effects caused by a possible binary companion using radio observations. We use the Monte Carlo radiative transfer code HDUST to produce model observables, which we compare with a very large set of multitechnique and multiwavelength observations that include ultraviolet and optical spectra, photometry covering the interval between optical and radio wavelengths, optical polarimetry, and optical and near-IR (spectro)interferometry. Due to the absence of large scale variability, data from different epochs can be combined into a single dataset. A parametric VDD model with radial density exponent of $n$ = 3.5, which is the canonical value for isothermal flaring disks, is found to explain observables typically formed in the inner disk, while observables originating in the more extended parts favor a shallower, $n$ = 3.0, density falloff. Modeling of radio observations allowed for the first determination of the physical extent of a Be disk (35$^{+10}_{-5}$ stellar radii), which might be caused by a binary companion. Finally, polarization data allowed for an indirect measurement of the rotation rate of the star, which was found to be $W gtrsim 0.98$, i.e., very close to critical.
Investigating long series of spectral and photometric observations, we found that the orbital elements of epsilon Aur are subject to much larger uncertainties than usually believed. The H alpha emission is found to move basically with the F primary but its exact location should still be investigated. We also find strong additional absorption and large reddening of the object near the third contact during the eclipse. Episodic atmospheric mass transfer from the F primary towards its companion is tentatively suggested.
167 - I. Platais 2011
We present comprehensive cluster membership and gr photometry of the prototypical old, metal-rich Galactic star cluster NGC 6791. The proper-motion catalog contains 58,901 objects down to g=24, limited to a circular area of radius 30 arcmin. The highest precision of the proper motions is 0.08 mas/yr. Our proper motions confirm cluster membership of all main and also some rare constituents of NGC 6791. The total number of probable cluster members down to g=22 (M_V=+8) is 4800, corresponding to M_tot=5000 M_solar. New findings include an extended horizontal branch in this cluster. The angular radius of NGC 6791 is at least 15 arcmin (the effective radius is R_h=4.4 arcmin while the tidal radius is r_t=23 arcmin). The luminosity function of the cluster peaks at M_g=+4.5 and then steadily declines toward fainter magnitudes. Our data provide evidence that differential reddening may not be ignored in NGC 6791.
The concept of local pressure is pivotal to describe many important physical phenomena, such as buoyancy or atmospheric phenomena, which always require the consideration of space-varying pressure fields. These fields have precise definitions within the phenomenology of hydro-thermodynamics, but a simple and pedagogical microscopic description based on Statistical Mechanical is still lacking in present literature. In this paper, we propose a new microscopic definition of the local pressure field inside a classical fluid, relying on a local barometer potential that is built into the many-particle Hamiltonian. Such a setup allows the pressure to be locally defined, at an arbitrary point inside the fluid, simply by doing a standard ensemble average of the radial force exerted by the barometer potential on the gas particles. This setup is further used to give a microscopic derivation of the generalized Archimedess buoyancy principle, in the presence of an arbitrary external field. As instructive examples, buoyancy force fields are calculated for ideal fluids in the presence of: i) a uniform force field, ii) a spherically symmetric harmonic confinement field, and iii) a centrifugal rotating frame.
203 - L. Ducci 2016
Symbiotic stars are a heterogeneous class of interacting binaries. Among them, RT Cru has been classified as prototype of a subclass that is characterised by hard X-ray spectra extending past ~20 keV. We analyse ~8.6 Ms of archival INTEGRAL data collected in the period 2003-2014, ~140 ks of Swift/XRT data, and a Suzaku observation of 39 ks, to study the spectral X-ray emission and investigate the nature of the compact object. Based on the 2MASS photometry, we estimate the distance to the source of 1.2-2.4 kpc. The X-ray spectrum obtained with Swift/XRT, JEM-X, IBIS/ISGRI, and Suzaku data is well fitted by a cooling flow model modified by an absorber that fully covers the source and two partial covering absorbers. Assuming that the hard X-ray emission of RT Cru originates from an optically thin boundary layer around a non-magnetic white dwarf, we estimated a mass of the WD of about 1.2 M_Sun. The mass accretion rate obtained for this source might be too high for the optically thin boundary layer scenario. Therefore we investigate other plausible scenarios to model its hard X-ray emission. We show that, alternatively, the observed X-ray spectrum can be explained with the X-ray emission from the post-shock region above the polar caps of a magnetised white dwarf with mass ~0.9-1.1 M_Sun.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا