Do you want to publish a course? Click here

Surface-induced positive planar Hall effect in topological Kondo insulator SmB6 microribbons

136   0   0.0 ( 0 )
 Added by Liang Zhou
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Whether the surface states in SmB6 are topological is still a critical issue in the field of topological Kondo insulators. In the magneto-transport study of single crystalline SmB6 microribbons, we have revealed a positive planar Hall effect (PHE), the amplitude of which increases dramatically with decreasing temperatures but saturates below 5 K. This positive PHE is ascribed to the surface states of SmB6 and expected to arise from the anisotropy in lifting the topological protection from back-scattering by the in-plane magnetic field, thus suggesting the topological nature of surface states in SmB6. On the contrary, a negative PHE is observed for the bulk states at high temperatures, which is almost three orders of magnitudes weaker than the surface-induced positive PHE.



rate research

Read More

The Dirac electrons occupying the surface states (SSs) of topological insulators (TIs) have been predicted to exhibit many exciting magneto-transport phenomena. Here we report on the first experimental observation of an unconventional planar Hall effect (PHE) and an electrically gate-tunable hysteretic planar magnetoresistance (PMR) in EuS/TI heterostructures, in which EuS is a ferromagnetic insulator (FMI) with an in-plane magnetization. In such exchange-coupled FMI/TI heterostructures, we find a significant (suppressed) PHE when the in-plane magnetic field is parallel (perpendicular) to the electric current. This behavior differs from previous observations of the PHE in ferromagnets and semiconductors. Furthermore, as the thickness of the 3D TI films is reduced into the 2D limit, in which the Dirac SSs develop a hybridization gap, we find a suppression of the PHE around the charge neutral point indicating the vital role of Dirac SSs in this phenomenon. To explain our findings, we outline a symmetry argument that excludes linear-Hall mechanisms and suggest two possible non-linear Hall mechanisms that can account for all the essential qualitative features in our observations.
A prominent feature of topological insulators (TIs) is the surface states comprising of spin-nondegenerate massless Dirac fermions. Recent technical advances have made it possible to address the surface transport properties of TI thin films while tuning the Fermi levels of both top and bottom surfaces across the Dirac point by electrostatic gating. This opened the window for studying the spin-nondegenerate Dirac physics peculiar to TIs. Here we report our discovery of a novel planar Hall effect (PHE) from the TI surface, which results from a hitherto-unknown resistivity anisotropy induced by an in-plane magnetic field. This effect is observed in dual-gated devices of bulk-insulating Bi$_{2-x}$Sb$_{x}$Te$_{3}$ thin films, in which both top and bottom surfaces are gated. The origin of PHE is the peculiar time-reversal-breaking effect of an in-plane magnetic field, which anisotropically lifts the protection of surface Dirac fermions from back-scattering. The key signature of the field-induced anisotropy is a strong dependence on the gate voltage with a characteristic two-peak structure near the Dirac point which is explained theoretically using a self-consistent T-matrix approximation. The observed PHE provides a new tool to analyze and manipulate the topological protection of the TI surface in future experiments.
We present a detailed investigation of the temperature and depth dependence of the magnetic properties of 3D topological Kondo insulator SmB6 , in particular near its surface. We find that local magnetic field fluctuations detected in the bulk are suppressed rapidly with decreasing depths, disappearing almost completely at the surface. We attribute the magnetic excitations to spin excitons in bulk SmB6 , which produce local magnetic fields of about ~1.8 mT fluctuating on a time scale of ~60 ns. We find that the excitonic fluctuations are suppressed when approaching the surface on a length scale of 40-90 nm, accompanied by a small enhancement in static magnetic fields. We associate this length scale to the size of the excitonic state.
The Berry phase picture provides important insights into the electronic properties of condensed matter systems. The intrinsic anomalous Hall (AH) effect can be understood as a consequence of non-zero Berry curvature in momentum space. The realization of the quantum anomalous Hall effect provided conclusive evidence for the intrinsic mechanism of the AH effect in magnetic topological insulators (TIs). Here we fabricated magnetic TI/TI heterostructures and found both the magnitude and sign of the AH effect in the magnetic TI layer can be altered by tuning the TI thickness and/or the electric gate voltage. The sign change of the AH effect with increasing TI thickness is attributed to the charge transfer across the TI and magnetic TI layers, consistent with first-principles calculations. By fabricating the magnetic TI/TI/magnetic TI sandwich heterostructures with different dopants, we created an artificial topological Hall (TH) effect-like feature in Hall traces. This artificial TH effect is induced by the superposition of two AH effects with opposite signs instead of the formation of chiral spin textures in the samples. Our study provides a new route to engineer the Berry curvature in magnetic topological materials that may lead to potential technological applications.
The quantum anomalous Hall (QAH) state is a two-dimensional bulk insulator with a non-zero Chern number in absence of external magnetic fields. Protected gapless chiral edge states enable dissipationless current transport in electronic devices. Doping topological insulators with random magnetic impurities could realize the QAH state, but magnetic order is difficult to establish experimentally in the bulk insulating limit. Here we predict that the single quintuple layer of GdBiTe3 film could be a stoichiometric QAH insulator based on ab-initio calculations, which explicitly demonstrate ferromagnetic order and chiral edge states inside the bulk gap. We further investigate the topological quantum phase transition by tuning the lattice constant and interactions. A simple low-energy effective model is presented to capture the salient physical feature of this topological material.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا