Do you want to publish a course? Click here

Magnetic fields alter tunneling in strong-field ionization

324   0   0.0 ( 0 )
 Added by Alexander Hartung
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

When a strong laser pulse induces the ionization of an atom, momentum conservation dictates that the absorbed photons transfer their momentum $p_{gamma}=E_{gamma}/c$ to the electron and its parent ion. Even after 30 years of studying strong-field ionization, the sharing of the photon momentum between the two particles and its underlying mechanism are still under debate in theory. Corresponding experiments are very challenging due to the extremely small photon momentum ($~10^{-4}$ a.u.) and their precision has been too limited, so far, to ultimately resolve the debate. Here, by utilizing a novel experimental approach of two counter-propagating laser pulses, we present a detailed study on the effects of the photon momentum in strong-field ionization. The high precision and self-referencing of the method allows to unambiguously demonstrate the action of the lights magnetic field on the electron while it is under the tunnel barrier, confirming theoretical predictions, disproving others. Our results deepen the understanding of, for example, molecular imaging and time-resolved photoelectron holography.



rate research

Read More

A new pathway of strong laser field induced ionization of an atom is identified which is based on recollisions under the tunneling barrier. With an amended strong field approximation, the interference of the direct and the under-the-barrier recolliding quantum orbits are shown to induce a measurable shift of the peak of the photoelectron momentum distribution. The scaling of the momentum shift is derived relating the momentum shift to the tunneling delay time according to the Wigner concept. This allows to extend the Wigner concept for the quasistatic tunneling time delay into the nonadiabatic domain. The obtained corrections to photoelectron momentum distributions are also relevant for state-of-the-art accuracy of strong field photoelectron spectrograms in general.
Interaction of a strong laser pulse with matter transfers not only energy but also linear momentum of the photons. Recent experimental advances have made it possible to detect the small amount of linear momentum delivered to the photoelectrons in strong-field ionization of atoms. We present numerical simulations as well as an analytical description of the subcycle phase (or time) resolved momentum transfer to an atom accessible by an attoclock protocol. We show that the light-field-induced momentum transfer is remarkably sensitive to properties of the ultrashort laser pulse such as its carrier-envelope phase and ellipticity. Moreover, we show that the subcycle resolved linear momentum transfer can provide novel insights into the interplay between nonadiabatic and nondipole effects in strong-field ionization. This work paves the way towards the investigation of the so-far unexplored time-resolved nondipole nonadiabatic tunneling dynamics.
Molecules show a much increased multiple ionization rate in a strong laser field as compared to atoms of similar ionization energy. A widely accepted model attributes this to the action of the joint fields of the adjacent ionic core and the laser on its neighbor inside the same molecule. The underlying physical picture for the enhanced ionization is that the up-field atom that gets ionized. However, this is still debated and remains unproven. Here we report an experimental verification of this long-standing prediction. This is accomplished by probing the two-site double ionization of ArXe, where the instantaneous field direction at the moment of electron release and the emission direction of the correlated ionizing center are measured by detecting the recoil sum- and relative-momenta of the fragment ions. Our results unambiguously prove the intuitive picture of the enhanced multielectron dissociative ionization of molecules and clarify a long-standing controversy.
99 - C. Chen , X. X. Ji , W. Y. Li 2020
We study ionization of atoms in strong two-dimensional (2D) laser fields with various forms, numerically and analytically. We focus on the local most-probable tunneling routes (some specific electron trajectories) which are corresponding to the local maxima of photoelectron momentum distributions (PMDs). By making classic-quantum correspondence, we obtain a condition for these routes characterized by the electron position at the tunnel exit. With comparing the identified routes with the classical limit and the partial-decoupling approximation where it is assumed that tunneling is dominated by the main component of the 2D field, some semiclassical properties of 2D tunneling are addressed. The local maxima of PMD related to the local most-probable routes can be used as one of the preferred observables in ultrafast measurements.
Strong-field ionization of atoms by circularly polarized femtosecond laser pulses produces a donut-shaped electron momentum distribution. Within the dipole approximation this distribution is symmetric with respect to the polarization plane. The magnetic component of the light field is known to shift this distribution forward. Here, we show that this magnetic non-dipole effect is not the only non-dipole effect in strong-field ionization. We find that an electric non-dipole effect arises that is due to the position dependence of the electric field and which can be understood in analogy to the Doppler effect. This electric non-dipole effect manifests as an increase of the radius of the donut-shaped photoelectron momentum distribution for forward-directed momenta and as a decrease of this radius for backwards-directed electrons. We present experimental data showing this fingerprint of the electric non-dipole effect and compare our findings with a classical model and quantum calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا