Do you want to publish a course? Click here

On the Euler--Maruyama scheme for degenerate stochastic differential equations with non-sticky condition

50   0   0.0 ( 0 )
 Added by Dai Taguchi
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

The aim of this paper is to study weak and strong convergence of the Euler--Maruyama scheme for a solution of one-dimensional degenerate stochastic differential equation $mathrm{d} X_t=sigma(X_t) mathrm{d} W_t$ with non-sticky condition. For proving this, we first prove that the Euler--Maruyama scheme also satisfies non-sticky condition. As an example, we consider stochastic differential equation $mathrm{d} X_t=|X_t|^{alpha} mathrm{d} W_t$, $alpha in (0,1/2)$ with non-sticky boundary condition and we give some remarks on CEV models in mathematical finance.

rate research

Read More

We study the following equation begin{equation*} frac{partial u(t,,x)}{partial t}= Delta u(t,,x)+b(u(t,,x))+sigma dot{W}(t,,x),quad t>0, end{equation*} where $sigma$ is a positive constant and $dot{W}$ is a space-time white noise. The initial condition $u(0,x)=u_0(x)$ is assumed to be a nonnegative and continuous function. We first study the problem on $[0,,1]$ with homogeneous Dirichlet boundary conditions. Under some suitable conditions, together with a theorem of Bonder and Groisman, our first result shows that the solution blows up in finite time if and only if begin{equation*} int_{cdot}^inftyfrac{1}{b(s)},d s<infty, end{equation*} which is the well-known Osgood condition. We also consider the same equation on the whole line and show that the above condition is sufficient for the nonexistence of global solutions. Various other extensions are provided; we look at equations with fractional Laplacian and spatial colored noise in $mathbb{R}^d$.
In this paper we present a scheme for the numerical solution of one-dimensional stochastic differential equations (SDEs) whose drift belongs to a fractional Sobolev space of negative regularity (a subspace of Schwartz distributions). We obtain a rate of convergence in a suitable $L^1$-norm and we implement the scheme numerically. To the best of our knowledge this is the first paper to study (and implement) numerical solutions of SDEs whose drift lives in a space of distributions. As a byproduct we also obtain an estimate of the convergence rate for a numerical scheme applied to SDEs with drift in $L^p$-spaces with $pin(1,infty)$.
The CEV model is given by the stochastic differential equation $X_t=X_0+int_0^tmu X_sds+int_0^tsigma (X^+_s)^pdW_s$, $frac{1}{2}le p<1$. It features a non-Lipschitz diffusion coefficient and gets absorbed at zero with a positive probability. We show the weak convergence of Euler-Maruyama approximations $X_t^n$ to the process $X_t$, $0le tle T$, in the Skorokhod metric. We give a new approximation by continuous processes which allows to relax some technical conditions in the proof of weak convergence in cite{HZa} done in terms of discrete time martingale problem. We calculate ruin probabilities as an example of such approximation. We establish that the ruin probability evaluated by simulations is not guaranteed to converge to the theoretical one, because the point zero is a discontinuity point of the limiting distribution. To establish such convergence we use the Levy metric, and also confirm the convergence numerically. Although the result is given for the specific model, our method works in a more general case of non-Lipschitz diffusion with absorbtion.
We study the Crank-Nicolson scheme for stochastic differential equations (SDEs) driven by multidimensional fractional Brownian motion $(B^{1}, dots, B^{m})$ with Hurst parameter $H in (frac 12,1)$. It is well-known that for ordinary differential equations with proper conditions on the regularity of the coefficients, the Crank-Nicolson scheme achieves a convergence rate of $n^{-2}$, regardless of the dimension. In this paper we show that, due to the interactions between the driving processes $ B^{1}, dots, B^{m} $, the corresponding Crank-Nicolson scheme for $m$-dimensional SDEs has a slower rate than for the one-dimensional SDEs. Precisely, we shall prove that when $m=1$ and when the drift term is zero, the Crank-Nicolson scheme achieves the exact convergence rate $n^{-2H}$, while in the case $m=1$ and the drift term is non-zero, the exact rate turns out to be $n^{-frac12 -H}$. In the general case when $m>1$, the exact rate equals $n^{frac12 -2H}$. In all these cases the limiting distribution of the leading error is proved to satisfy some linear SDE driven by Brownian motions independent of the given fractional Brownian motions.
In this paper, the discrete parameter expansion is adopted to investigate the estimation of heat kernel for Euler-Maruyama scheme of SDEs driven by {alpha}-stable noise, which implies krylovs estimate and khasminskiis estimate. As an application, the convergence rate of Euler-Maruyama scheme of a class of multidimensional SDEs with singular drift( in aid of Zvonkins transformation) is obtained.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا