Do you want to publish a course? Click here

Crank-Nicolson scheme for stochastic differential equations driven by fractional Brownian motions

177   0   0.0 ( 0 )
 Added by Yanghui Liu
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We study the Crank-Nicolson scheme for stochastic differential equations (SDEs) driven by multidimensional fractional Brownian motion $(B^{1}, dots, B^{m})$ with Hurst parameter $H in (frac 12,1)$. It is well-known that for ordinary differential equations with proper conditions on the regularity of the coefficients, the Crank-Nicolson scheme achieves a convergence rate of $n^{-2}$, regardless of the dimension. In this paper we show that, due to the interactions between the driving processes $ B^{1}, dots, B^{m} $, the corresponding Crank-Nicolson scheme for $m$-dimensional SDEs has a slower rate than for the one-dimensional SDEs. Precisely, we shall prove that when $m=1$ and when the drift term is zero, the Crank-Nicolson scheme achieves the exact convergence rate $n^{-2H}$, while in the case $m=1$ and the drift term is non-zero, the exact rate turns out to be $n^{-frac12 -H}$. In the general case when $m>1$, the exact rate equals $n^{frac12 -2H}$. In all these cases the limiting distribution of the leading error is proved to satisfy some linear SDE driven by Brownian motions independent of the given fractional Brownian motions.



rate research

Read More

In this note we consider generalized diffusion equations in which the diffusivity coefficient is not necessarily constant in time, but instead it solves a nonlinear fractional differential equation involving fractional Riemann-Liouville time-derivative. Our main contribution is to highlight the link between these generalised equations and fractional Brownian motion (fBm). In particular, we investigate the governing equation of fBm and show that its diffusion coefficient must satisfy an additive evolutive fractional equation. We derive in a similar way the governing equation of the iterated fractional Brownian motion.
109 - Yanghui Liu , Samy Tindel 2017
In this article, we consider the so-called modified Euler scheme for stochastic differential equations (SDEs) driven by fractional Brownian motions (fBm) with Hurst parameter $frac13<H<frac12$. This is a first-order time-discrete numerical approximation scheme, and has been recently introduced by Hu, Liu and Nualart in order to generalize the classical Euler scheme for It^o SDEs to the case $H>frac12$. The current contribution generalizes the modified Euler scheme to the rough case $frac13<H<frac12$. Namely, we show a convergence rate of order $n^{frac12-2H}$ for the scheme, and we argue that this rate is exact. We also derive a central limit theorem for the renormalized error of the scheme, thanks to some new techniques for asymptotics of weighted random sums. Our main idea is based on the following observation: the triple of processes obtained by considering the fBm, the scheme process and the normalized error process, can be lifted to a new rough path. In addition, the Holder norm of this new rough path has an estimate which is independent of the step-size of the scheme.
This article is concerned with stochastic differential equations driven by a $d$ dimensional fractional Brownian motion with Hurst parameter $H>1/4$, understood in the rough paths sense. Whenever the coefficients of the equation satisfy a uniform hypoellipticity condition, we establish a sharp local estimate on the associated control distance function and a sharp local lower estimate on the density of the solution. Our methodology relies heavily on the rough paths structure of the equation.
This article is concerned with stochastic differential equations driven by a $d$ dimensional fractional Brownian motion with Hurst parameter $H>1/4$, understood in the rough paths sense. Whenever the coefficients of the equation satisfy a uniform ellipticity condition, we establish a sharp local estimate on the associated control distance function and a sharp local lower estimate on the density of the solution.
In this paper, we investigate suffcient and necessary conditions for the comparison theorem of neutral stochastic functional differential equations driven by G-Brownian motion (G-NSFDE). Moreover, the results extend the ones in the linear expectation case [1] and nonlinear expectation framework [8].
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا