Do you want to publish a course? Click here

An Adaptive Soft Plasmonic Nanosheet Resonator

379   0   0.0 ( 0 )
 Added by Yuerui Lu Mr.
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Current micro nanomechanical system are usually based on rigid crystalline semiconductors that normally have high quality factors but lack adaptive responses to variable frequencies, a capability ubiquitous for communications in the biological world, such as bat and whale calls. Here, we demonstrate a soft mechanical resonator based on a freestanding organic-inorganic hybrid plasmonic superlattice nanosheet, which can respond adaptively to either incident light intensity or wavelength. This is achieved because of strong plasmonic coupling in closely-packed nanocrystals which can efficiently concentrate and convert photons into heat. The heat causes the polymer matrix to expand, leading to a change in the nanomechanical properties of the plasmonic nanosheet. Notably, the adaptive frequency responses are also reversible and the responsive ranges are fine-tunable by adjusting the constituent nanocrystal building blocks. We believe that our plasmonic nanosheets may open a new route to design next-generation intelligent bio-mimicking opto-mechanical resonance systems.

rate research

Read More

The ability of extreme sound energy confinement with high-quality factor (Q-factor) resonance is of vital importance for acoustic devices requiring high intensity and hypersensitivity in biological ultrasonics, enhanced collimated sound emission (i.e. sound laser) and high-resolution sensing. However, structures reported so far demonstrated a limited quality factor (Q-factor) of acoustic resonances, up to several tens in an open resonator. The emergence of bound states in the continuum (BIC) makes it possible to realize high-Q factor acoustic modes. Here, we report the theoretical design and experimental demonstration of acoustic BICs supported by a single open resonator. We predicted that such an open acoustic resonator could simultaneously support three types of BICs, including symmetry protected BIC, Friedrich-Wintgen BIC induced by mode interference, as well as a new kind of BIC: mirror-symmetry induced BIC. We also experimentally demonstrated the existence of all three types of BIC with Q-factor up to one order of magnitude greater than the highest Q-factor reported in an open resonator.
102 - Xueqing Liu , Trond Ytterdal , 2020
We show that Si MOSFETs, AlGaN/GaN HEMTs, AlGaAs/InGaAs HEMTs, and p-diamond FETs with feature sizes ranging from 20 nm to 130 nm could operate at room temperature as THz spectrometers in the frequency range from 120 GHz to 9.3 THz with different subranges corresponding to the transistors with different features sizes and tunable by the gate bias. The spectrometer uses a symmetrical FET with interchangeable source and drain with the rectified THz voltage between the source and drain being proportional to the sine of the phase shift between the voltages induced by the THz signal between gate-to-drain and gate-to-source. This phase difference could be created by using different antennas for the source-to-gate and drain-to gate contacts or by using a delay line introducing a phase shift or even by manipulating the impinging angle of the two antennas. The spectrometers are simulated using the multi-segment unified charge control model implemented in SPICE and ADS and accounting for the electron inertia effect and the distributed channel resistances, capacitances and Drude inductances.
In this article, a chiral plasmonic hydrogen-sensing platform using palladium-based nanohelices is demonstrated. Such 3D chiral nanostructures fabricated by nanoglancing angle deposition exhibit strong circular dichroism both experimentally and theoretically. The chiroptical properties of the palladium nanohelices are altered upon hydrogen uptake and sensitively depend on the hydrogen concentration. Such properties are well suited for remote and spark-free hydrogen sensing in the flammable range. Hysteresis is reduced, when an increasing amount of gold is utilized in the palladium-gold hybrid helices. As a result, the linearity of the circular dichroism in response to hydrogen is significantly improved. The chiral plasmonic sensor scheme is of potential interest for hydrogen-sensing applications, where good linearity and high sensitivity are required.
One of the fundamental challenges in nanophotonics is to gain full control over nanoscale optical elements. The precise spatiotemporal arrangement determines their interactions and collective behavior. To this end, DNA nanotechnology is employed as an unprecedented tool to create nanophotonic devices with excellent spatial addressability and temporal programmability. However, most of the current DNA-assembled nanophotonic devices can only reconfigure among random or very few defined states. Here, we demonstrate a DNA-assembled rotary plasmonic nanoclock. In this system, a rotor gold nanorod can carry out directional and reversible 360 degree rotation with respect to a stator gold nanorod, transitioning among 16 well-defined configurations powered by DNA fuels. The full-turn rotation process is monitored by optical spectroscopy in real time. We further demonstrate autonomous rotation of the plasmonic nanoclock powered by DNAzyme-RNA interactions. Such assembly approaches pave a viable route towards advanced nanophotonic systems entirely from the bottom-up.
A plasmonic modulator is a device that controls the amplitude or phase of propagating plasmons. In a pure plasmonic modulator, the presence or absence of a pump plasmonic wave controls the amplitude of a probe plasmonic wave through a channel. This control has to be mediated by an interaction between disparate plasmonic waves, typically requiring the integration of a nonlinear material. In this work, we demonstrate the first 2D semiconductor nonlinear plasmonic modulator based on a WSe2 monolayer integrated on top of a lithographically defined metallic waveguide. We utilize the strong coupling between the surface plasmon polaritons, SPPs, and excitons in the WSe2 to give a 73 percent change in transmission through the device. We demonstrate control of the propagating SPPs using both optical and SPP pumps, realizing the first demonstration of a 2D semiconductor nonlinear plasmonic modulator, with a modulation depth of 4.1 percent, and an ultralow switching energy estimated to be 40 aJ.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا