Do you want to publish a course? Click here

Can We Automate Diagrammatic Reasoning?

64   0   0.0 ( 0 )
 Added by Arif Ahmed Sk
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Learning to solve diagrammatic reasoning (DR) can be a challenging but interesting problem to the computer vision research community. It is believed that next generation pattern recognition applications should be able to simulate human brain to understand and analyze reasoning of images. However, due to the lack of benchmarks of diagrammatic reasoning, the present research primarily focuses on visual reasoning that can be applied to real-world objects. In this paper, we present a diagrammatic reasoning dataset that provides a large variety of DR problems. In addition, we also propose a Knowledge-based Long Short Term Memory (KLSTM) to solve diagrammatic reasoning problems. Our proposed analysis is arguably the first work in this research area. Several state-of-the-art learning frameworks have been used to compare with the proposed KLSTM framework in the present context. Preliminary results indicate that the domain is highly related to computer vision and pattern recognition research with several challenging avenues.



rate research

Read More

Although automated reasoning with diagrams has been possible for some years, tools for diagrammatic reasoning are generally much less sophisticated than their sentential cousins. The tasks of exploring levels of automation and abstraction in the construction of proofs and of providing explanations of solutions expressed in the proofs remain to be addressed. In this paper we take an interactive proof assistant for Euler diagrams, Speedith, and add tactics to its reasoning engine, providing a level of automation in the construction of proofs. By adding tactics to Speediths repertoire of inferences, we ease the interaction between the user and the system and capture a higher level explanation of the essence of the proof. We analysed the design options for tactics by using metrics which relate to human readability, such as the number of inferences and the amount of clutter present in diagrams. Thus, in contrast to the normal case with sentential tactics, our tactics are designed to not only prove the theorem, but also to support explanation.
Code changes constitute one of the most important features of software evolution. Studying them can provide insights into the nature of software development and also lead to practical solutions - recommendations and automations of popular changes for developers. In our work, we developed a tool called PythonChangeMiner that allows to discover code change patterns in the histories of Python projects. We validated the tool and then employed it to discover patterns in the dataset of 120 projects from four different domains of software engineering. We manually categorized patterns that occur in more than one project from the standpoint of their structure and content, and compared different domains and patterns in that regard. We conducted a survey of the authors of the discovered changes: 82.9% of them said that they can give the change a name and 57.9% expressed their desire to have the changes automated, indicating the ability of the tool to discover valuable patterns. Finally, we interviewed 9 members of a popular integrated development environment (IDE) development team to estimate the feasibility of automating the discovered changes. It was revealed that independence from the context and high precision made a pattern a better candidate for automation. The patterns received mainly positive reviews and several were ranked as very likely for automation.
Abstract reasoning, particularly in the visual domain, is a complex human ability, but it remains a challenging problem for artificial neural learning systems. In this work we propose MXGNet, a multilayer graph neural network for multi-panel diagrammatic reasoning tasks. MXGNet combines three powerful concepts, namely, object-level representation, graph neural networks and multiplex graphs, for solving visual reasoning tasks. MXGNet first extracts object-level representations for each element in all panels of the diagrams, and then forms a multi-layer multiplex graph capturing multiple relations between objects across different diagram panels. MXGNet summarises the multiple graphs extracted from the diagrams of the task, and uses this summarisation to pick the most probable answer from the given candidates. We have tested MXGNet on two types of diagrammatic reasoning tasks, namely Diagram Syllogisms and Raven Progressive Matrices (RPM). For an Euler Diagram Syllogism task MXGNet achieves state-of-the-art accuracy of 99.8%. For PGM and RAVEN, two comprehensive datasets for RPM reasoning, MXGNet outperforms the state-of-the-art models by a considerable margin.
Data science is labor-intensive and human experts are scarce but heavily involved in every aspect of it. This makes data science time consuming and restricted to experts with the resulting quality heavily dependent on their experience and skills. To make data science more accessible and scalable, we need its democratization. Automated Data Science (AutoDS) is aimed towards that goal and is emerging as an important research and business topic. We introduce and define the AutoDS challenge, followed by a proposal of a general AutoDS framework that covers existing approaches but also provides guidance for the development of new methods. We categorize and review the existing literature from multiple aspects of the problem setup and employed techniques. Then we provide several views on how AI could succeed in automating end-to-end AutoDS. We hope this survey can serve as insightful guideline for the AutoDS field and provide inspiration for future research.
Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output does not depend too heavily on any one input or specific training example? More precisely, we investigate learning algorithms that satisfy differential privacy, a notion that provides strong confidentiality guarantees in contexts where aggregate information is released about a database containing sensitive information about individuals. We demonstrate that, ignoring computational constraints, it is possible to privately agnostically learn any concept class using a sample size approximately logarithmic in the cardinality of the concept class. Therefore, almost anything learnable is learnable privately: specifically, if a concept class is learnable by a (non-private) algorithm with polynomial sample complexity and output size, then it can be learned privately using a polynomial number of samples. We also present a computationally efficient private PAC learner for the class of parity functions. Local (or randomized response) algorithms are a practical class of private algorithms that have received extensive investigation. We provide a precise characterization of local private learning algorithms. We show that a concept class is learnable by a local algorithm if and only if it is learnable in the statistical query (SQ) model. Finally, we present a separation between the power of interactive and noninteractive local learning algorithms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا