Do you want to publish a course? Click here

What Can We Learn Privately?

218   0   0.0 ( 0 )
 Publication date 2010
and research's language is English




Ask ChatGPT about the research

Learning problems form an important category of computational tasks that generalizes many of the computations researchers apply to large real-life data sets. We ask: what concept classes can be learned privately, namely, by an algorithm whose output does not depend too heavily on any one input or specific training example? More precisely, we investigate learning algorithms that satisfy differential privacy, a notion that provides strong confidentiality guarantees in contexts where aggregate information is released about a database containing sensitive information about individuals. We demonstrate that, ignoring computational constraints, it is possible to privately agnostically learn any concept class using a sample size approximately logarithmic in the cardinality of the concept class. Therefore, almost anything learnable is learnable privately: specifically, if a concept class is learnable by a (non-private) algorithm with polynomial sample complexity and output size, then it can be learned privately using a polynomial number of samples. We also present a computationally efficient private PAC learner for the class of parity functions. Local (or randomized response) algorithms are a practical class of private algorithms that have received extensive investigation. We provide a precise characterization of local private learning algorithms. We show that a concept class is learnable by a local algorithm if and only if it is learnable in the statistical query (SQ) model. Finally, we present a separation between the power of interactive and noninteractive local learning algorithms.



rate research

Read More

We investigate the effects of multi-task learning using the recently introduced task of semantic tagging. We employ semantic tagging as an auxiliary task for three different NLP tasks: part-of-speech tagging, Universal Dependency parsing, and Natural Language Inference. We compare full neural network sharing, partial neural network sharing, and what we term the learning what to share setting where negative transfer between tasks is less likely. Our findings show considerable improvements for all tasks, particularly in the learning what to share setting, which shows consistent gains across all tasks.
90 - Di Zhang 2021
The proposition of lottery ticket hypothesis revealed the relationship between network structure and initialization parameters and the learning potential of neural networks. The original lottery ticket hypothesis performs pruning and weight resetting after training convergence, exposing it to the problem of forgotten learning knowledge and potential high cost of training. Therefore, we propose a strategy that combines the idea of neural network structure search with a pruning algorithm to alleviate this problem. This algorithm searches and extends the network structure on existing winning ticket sub-network to producing new winning ticket recursively. This allows the training and pruning process to continue without compromising performance. A new winning ticket sub-network with deeper network structure, better generalization ability and better test performance can be obtained in this recursive manner. This method can solve: the difficulty of training or performance degradation of the sub-networks after pruning, the forgetting of the weights of the original lottery ticket hypothesis and the difficulty of generating winning ticket sub-network when the final network structure is not given. We validate this strategy on the MNIST and CIFAR-10 datasets. And after relating it to similar biological phenomena and relevant lottery ticket hypothesis studies in recent years, we will further propose a new hypothesis to discuss which factors that can keep a network juvenile, i.e., those possible factors that influence the learning potential or generalization performance of a neural network during training.
We discuss the features of instabilities in binary systems, in particular, for asymmetric nuclear matter. We show its relevance for the interpretation of results obtained in experiments and in ab initio simulations of the reaction between $^{124}Sn+^{124}Sn$ at 50AMeV.}
Different from other multiple top-quark productions, triple top-quark production requires the presence of both flavor violating neutral interaction and flavor conserving neutral interaction. We describe the interaction of triple top-quarks and up-quark in terms of two dimension-6 operators; one can be induced by a new heavy vector resonance, the other by a scalar resonance. Combining same-sign top-quark pair production and four top-quark production, we explore the potential of the 13 TeV LHC on searching for the triple top-quark production.
Machine learning is increasingly recognized as a promising technology in the biological, biomedical, and behavioral sciences. There can be no argument that this technique is incredibly successful in image recognition with immediate applications in diagnostics including electrophysiology, radiology, or pathology, where we have access to massive amounts of annotated data. However, machine learning often performs poorly in prognosis, especially when dealing with sparse data. This is a field where classical physics-based simulation seems to remain irreplaceable. In this review, we identify areas in the biomedical sciences where machine learning and multiscale modeling can mutually benefit from one another: Machine learning can integrate physics-based knowledge in the form of governing equations, boundary conditions, or constraints to manage ill-posted problems and robustly handle sparse and noisy data; multiscale modeling can integrate machine learning to create surrogate models, identify system dynamics and parameters, analyze sensitivities, and quantify uncertainty to bridge the scales and understand the emergence of function. With a view towards applications in the life sciences, we discuss the state of the art of combining machine learning and multiscale modeling, identify applications and opportunities, raise open questions, and address potential challenges and limitations. We anticipate that it will stimulate discussion within the community of computational mechanics and reach out to other disciplines including mathematics, statistics, computer science, artificial intelligence, biomedicine, systems biology, and precision medicine to join forces towards creating robust and efficient models for biological systems.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا