Do you want to publish a course? Click here

Inequalities that sharpen the triangle inequality for sums of $N$ functions in $L^p$

207   0   0.0 ( 0 )
 Added by Eric Carlen
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We study $L^p$ inequalities that sharpen the triangle inequality for sums of $N$ functions in $L^p$.

rate research

Read More

In 2006 Carbery raised a question about an improvement on the naive norm inequality $|f+g|_p^p leq 2^{p-1}(|f|_p^p + |g|_p^p)$ for two functions in $L^p$ of any measure space. When $f=g$ this is an equality, but when the supports of $f$ and $g$ are disjoint the factor $2^{p-1}$ is not needed. Carberys question concerns a proposed interpolation between the two situations for $p>2$. The interpolation parameter measuring the overlap is $|fg|_{p/2}$. We prove an inequality of this type that is stronger than the one Carbery proposed. Moreover, our stronger inequalities are valid for all $p$.
This paper deals with the inequalities devoted to the comparison between the norm of a function on a compact hypergroup and the norm of its Fourier coefficients. We prove the classical Paley inequality in the setting of compact hypergroups which further gives the Hardy-Littlewood and Hausdorff-Young-Paley (Pitt) inequalities in the noncommutative context. We establish Hormanders $L^p$-$L^q$ Fourier multiplier theorem on compact hypergroups for $1<p leq 2 leq q<infty$ as an application of Hausdorff-Young-Paley inequality. We examine our results for the hypergroups constructed from the conjugacy classes of compact Lie groups and for a class of countable compact hypergroups.
131 - Egor Kosov 2020
The paper studies the sampling discretization problem for integral norms on subspaces of $L^p(mu)$. Several close to optimal results are obtained on subspaces for which certain Nikolskii-type inequality is valid. The problem of norms discretization is connected with the probabilistic question about the approximation with high probability of marginals of a high dimensional random vector by sampling. As a byproduct of our approach we refine the result of O. Gu$acute{e}$don and M. Rudelson concerning the approximation of marginals. In particular, the obtained improvement recovers a theorem of J. Bourgain, J. Lindenstrauss, and V. Milman concerning embeddings of finite dimensional subspaces of $L^p[0, 1]$ into $ell_p^m$. The proofs in the paper use the recent developments of the chaining technique by R. van Handel.
In this article, we begin a systematic study of the boundedness and the nuclearity properties of multilinear periodic pseudo-differential operators and multilinear discrete pseudo-differential operators on $L^p$-spaces. First, we prove analogues of known multilinear Fourier multipliers theorems (proved by Coifman and Meyer, Grafakos, Tomita, Torres, Kenig, Stein, Fujita, Tao, etc.) in the context of periodic and discrete multilinear pseudo-differential operators. For this, we use the periodic analysis of pseudo-differential operators developed by Ruzhansky and Turunen. Later, we investigate the $s$-nuclearity, $0<s leq 1,$ of periodic and discrete pseudo-differential operators. To accomplish this, we classify those $s$-nuclear multilinear integral operators on arbitrary Lebesgue spaces defined on $sigma$-finite measures spaces. We also study similar properties for periodic Fourier integral operators. Finally, we present some applications of our study to deduce the periodic Kato-Ponce inequality and to examine the $s$-nuclearity of multilinear Bessel potentials as well as the $s$-nuclearity of periodic Fourier integral operators admitting suitable types of singularities.
198 - Chunlin Wang , Liping Yang 2020
In this paper, we focus on a family of generalized Kloosterman sums over the torus. With a few changes to Haessig and Sperbers construction, we derive some relative $p$-adic cohomologies corresponding to the $L$-functions. We present explicit forms of bases of top dimensional cohomology spaces, so to obtain a concrete method to compute lower bounds of Newton polygons of the $L$-functions. Using the theory of GKZ system, we derive the Dworks deformation equation for our family. Furthermore, with the help of Dworks dual theory and deformation theory, the strong Frobenius structure of this equation is established. Our work adds some new evidences for Dworks conjecture.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا