Do you want to publish a course? Click here

Square Lattice Iridates

72   0   0.0 ( 0 )
 Added by Bumjoon Kim
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Over the last few years, Sr$_2$IrO$_4$, a single-layer member of the Ruddlesden-Popper series iridates, has received much attention as a close analog of cuprate high-temperature superconductors. Although there is not yet firm evidence for superconductivity, a remarkable range of cuprate phenomenology has been reproduced in electron- and hole-doped iridates including pseudogaps, Fermi arcs, and $d$-wave gaps. Further, a number of symmetry breaking orders reminiscent of those decorating the cuprate phase diagram have been reported using various experimental probes. We discuss how the electronic structures of Sr$_2$IrO$_4$ through strong spin-orbit coupling leads to the low-energy physics that had long been unique to cuprates, what the similarities and differences between cuprates and iridates are, and how these advance the field of high-temperature superconductivity by isolating essential ingredients of superconductivity from a rich array of phenomena that surround it. Finally, we comment on the prospect of finding a new high-temperature superconductor based on the iridate series.



rate research

Read More

The square-lattice quantum Heisenberg antiferromagnet displays a pronounced anomaly of unknown origin in its magnetic excitation spectrum. The anomaly manifests itself only for short wavelength excitations propagating along the direction connecting nearest neighbors. Using polarized neutron spectroscopy, we have fully characterized the magnetic fluctuations in the model metal-organic compound CFTD, revealing an isotropic continuum at the anomaly indicative of fractional excitations. A theoretical framework based on the Gutzwiller projection method is developed to explain the origin of the continuum at the anomaly. This indicates that the anomaly arises from deconfined fractional spin-1/2 quasiparticle pairs, the 2D analog of 1D spinons. Away from the anomaly the conventional spin-wave spectrum is recovered as pairs of fractional quasiparticles bind to form spin-1 magnons. Our results therefore establish the existence of fractional quasiparticles in the simplest model two dimensional antiferromagnet even in the absence of frustration.
We develop a simple and unbiased numerical method to obtain the uniform susceptibility of quantum many body systems. When a Hamiltonian is spatially deformed by multiplying it with a sine square function that smoothly decreases from the system center toward the edges, the size-scaling law of the excitation energy is drastically transformed to a rapidly converging one. Then, the local magnetization at the system center becomes nearly size independent; the one obtained for the deformed Hamiltonian of a system length as small as L=10 provides the value obtained for the original uniform Hamiltonian of L=100. This allows us to evaluate a bulk magnetic susceptibility by using the magnetization at the center by existing numerical solvers without any approximation, parameter tuning, or the size-scaling analysis. We demonstrate that the susceptibilities of the spin-1/2 antiferromagnetic Heisenberg chain and square lattice obtained by our scheme at L=10 agree within 10 to (-3) with exact analytical and numerical solutions for L=infinite down to temperature of 0.1 times the coupling constant. We apply this method to the spin-1/2 kagome lattice Heisenberg antiferromagnet which is of prime interest in the search of spin liquids.
$rm Sr_2IrO_4$ is an archetypal spin-orbit-coupled Mott insulator and has been extensively studied in part because of a wide range of predicted novel states. Limited experimental characterization of these states thus far brings to light the extraordinary susceptibility of the physical properties to the lattice, particularly, the Ir-O-Ir bond angle. Here, we report a newly observed microscopic rotation of the IrO$_6$ octahedra below 50~K measured by single crystal neutron diffraction. This sharp lattice anomaly provides keys to understanding the anomalous low-temperature physics and a direct confirmation of a crucial role that the Ir-O-Ir bond angle plays in determining the ground state. Indeed, as also demonstrated in this study, applied electric current readily weakens the antiferromagnetic order via the straightening of the Ir-O-Ir bond angle, highlighting that even slight change in the local structure can disproportionately affect the physical properties in the spin-orbit-coupled system.
The J1-J2 model on a square lattice exhibits a rich variety of different forms of magnetic order that depend sensitively on the ratio of exchange constants J2/J1. We use bulk magnetometry and polarized neutron scattering to determine J1 and J2 unambiguously for two materials in a new family of vanadium phosphates, Pb2VO(PO4)2 and SrZnVO(PO4)2, and we find that they have ferromagnetic J1. The ordered moment in the collinear antiferromagnetic ground state is reduced, and the diffuse magnetic scattering is enhanced, as the predicted bond-nematic region of the phase diagram is approached.
We propose a two-dimensional time-reversal invariant system of essentially non-interacting electrons on a square lattice that exhibits configurations with fractional charges e/2. These are vortex-like topological defects in the dimerization order parameter describing spatial modulation in the electron hopping amplitudes. Charge fractionalization is established by a simple counting argument, analytical calculation within the effective low-energy theory, and by an exact numerical diagonalization of the lattice Hamiltonian. We comment on the exchange statistics of fractional charges and possible realizations of the system.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا