Do you want to publish a course? Click here

Deep autoregressive models for the efficient variational simulation of many-body quantum systems

73   0   0.0 ( 0 )
 Added by Or Sharir
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Artificial Neural Networks were recently shown to be an efficient representation of highly-entangled many-body quantum states. In practical applications, neural-network states inherit numerical schemes used in Variational Monte Carlo, most notably the use of Markov-Chain Monte-Carlo (MCMC) sampling to estimate quantum expectations. The local stochastic sampling in MCMC caps the potential advantages of neural networks in two ways: (i) Its intrinsic computational cost sets stringent practical limits on the width and depth of the networks, and therefore limits their expressive capacity; (ii) Its difficulty in generating precise and uncorrelated samples can result in estimations of observables that are very far from their true value. Inspired by the state-of-the-art generative models used in machine learning, we propose a specialized Neural Network architecture that supports efficient and exact sampling, completely circumventing the need for Markov Chain sampling. We demonstrate our approach for two-dimensional interacting spin models, showcasing the ability to obtain accurate results on larger system sizes than those currently accessible to neural-network quantum states.



rate research

Read More

Coupling a quantum many-body system to an external environment dramatically changes its dynamics and offers novel possibilities not found in closed systems. Of special interest are the properties of the steady state of such open quantum many-body systems, as well as the relaxation dynamics towards the steady state. However, new computational tools are required to simulate open quantum many-body systems, as methods developed for closed systems cannot be readily applied. We review several approaches to simulate open many-body systems and point out the advances made in recent years towards the simulation of large system sizes.
We generalize Pages result on the entanglement entropy of random pure states to the many-body eigenstates of realistic disordered many-body systems subject to long range interactions. This extension leads to two principal conclusions: first, for increasing disorder the shells of constant energy supporting a systems eigenstates fill only a fraction of its full Fock space and are subject to intrinsic correlations absent in synthetic high-dimensional random lattice systems. Second, in all regimes preceding the many-body localization transition individual eigenstates are thermally distributed over these shells. These results, corroborated by comparison to exact diagonalization for an SYK model, are at variance with the concept of non-ergodic extended states in many-body systems discussed in the recent literature.
Quantum many-body systems (QMBs) are some of the most challenging physical systems to simulate numerically. Methods involving approximations for tensor network (TN) contractions have proven to be viable alternatives to algorithms such as quantum Monte Carlo or simulated annealing. However, these methods are cumbersome, difficult to implement, and often have significant limitations in their accuracy and efficiency when considering systems in more than one dimension. In this paper, we explore the exact computation of TN contractions on two-dimensional geometries and present a heuristic improvement of TN contraction that reduces the computing time, the amount of memory, and the communication time. We run our algorithm for the Ising model using memory optimized x1.32x large instances on Amazon Web Services (AWS) Elastic Compute Cloud (EC2). Our results show that cloud computing is a viable alternative to supercomputers for this class of scientific applications.
The many-body localization (MBL) transition is a quantum phase transition involving highly excited eigenstates of a disordered quantum many-body Hamiltonian, which evolve from extended/ergodic (exhibiting extensive entanglement entropies and fluctuations) to localized (exhibiting area-law scaling of entanglement and fluctuations). The MBL transition can be driven by the strength of disorder in a given spectral range, or by the energy density at fixed disorder - if the system possesses a many-body mobility edge. Here we propose to explore the latter mechanism by using quantum-quench spectroscopy, namely via quantum quenches of variable width which prepare the state of the system in a superposition of eigenstates of the Hamiltonian within a controllable spectral region. Studying numerically a chain of interacting spinless fermions in a quasi-periodic potential, we argue that this system has a many-body mobility edge; and we show that its existence translates into a clear dynamical transition in the time evolution immediately following a quench in the strength of the quasi-periodic potential, as well as a transition in the scaling properties of the quasi-stationary state at long times. Our results suggest a practical scheme for the experimental observation of many-body mobility edges using cold-atom setups.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا