No Arabic abstract
The influence of He+ ion irradiation on the transport and magnetic properties of epitaxial layers of a diluted magnetic semiconductor (DMS) (In,Fe)Sb, a two-phase (In,Fe)Sb composite and a nominally undoped InSb semiconductor has been investigated. In all layers, a conductivity type conversion from the initial n-type to the ptype has been found. The ion fluence at which the conversion occurs depends on the Fe concentration in the InSb matrix. Magnetotransport properties of the two-phase (In,Fe)Sb layer are strongly affected by ferromagnetic Fe inclusions. An influence of the number of electrically active radiation defects on the magnetic properties of the single-phase In0.75Fe0.25Sb DMS has been found. At the same time, the results show that the magnetic properties of the In0.75Fe0.25Sb DMS are quite resistant to significant changes of the charge carrier concentration and the Fermi level position. The results confirm a weak interrelation between the ferromagnetism and the charge carrier concentration in (In,Fe)Sb.
The (In,Fe)Sb layers with the Fe content up to 13 at. % have been grown on (001) GaAs substrates using the pulsed laser deposition. The TEM investigations show that the (In,Fe)Sb layers are epitaxial and free of the inclusions of a second phase. The observation of the hysteretic magnetoresistance curves at temperatures up to 300 K reveals that the Curie point is above room temperature. The resonant character of magnetic circular dichroism confirms the intrinsic ferromagnetism in the (In,Fe)Sb layers. We suggest that the ferromagnetism of the (In,Fe)Sb matrix is not carrier-mediated and apparently is determined by the mechanism of superexchange interaction between Fe atoms (This work was presented at the XXI Symposium Nanophysics and Nanoelectronics, Nizhny Novgorod, March, 13-16, 2017 (book of proceedings v.1, p. 195), http://nanosymp.ru/UserFiles/Symp/2017_v1.pdf).
Here we present a study of magnetism in CTO anatase films grown by pulsed laser deposition under a variety of oxygen partial pressures and deposition rates. Energy-dispersive spectrometry and transition electron microscopy analyses indicate that a high deposition rate leads to a homogeneous microstructure, while very low rate or postannealing results in cobalt clustering. Depth resolved low-energy muon spin rotation experiments show that films grown at a low oxygen partial pressure ($approx 10^{-6}$ torr) with a uniform structure are fully magnetic, indicating intrinsic ferromagnetism. First principles calculations identify the beneficial role of low oxygen partial pressure in the realization of uniform carrier-mediated ferromagnetism. This work demonstrates that Co:TiO$_2$ is an intrinsic diluted magnetic semiconductor.
We demonstrated the control of ferromagnetism in a surface quantum well containing a 5-nm-thick n-type ferromagnetic semiconductor (In,Fe)As layer sandwiched between two InAs layers, by manipulating the carrier wavefunction. The Curie temperature (Tc) of the (In,Fe)As layer was effectively changed by up to 12 K ({Delta}Tc/Tc = 55%). Our calculation using the mean-field Zener theory reveals an unexpectedly large s-d exchange interaction in (In,Fe)As. Our results establish an effective way to control the ferromagnetism in quantum heterostructures of n-type FMSs, as well as require reconsideration on the current understanding of the s-d exchange interaction in narrow gap FMSs.
A direct observation of the giant Zeeman splitting of the free excitons in (Ga,Fe)N is reported. The magnetooptical and magnetization data imply the ferromagnetic sign and a reduced magnitude of the effective p-d exchange energy governing the interaction between Fe^{3+} ions and holes in GaN, N_0 beta^(app) = +0.5 +/- 0.2 eV. This finding corroborates the recent suggestion that the strong p-d hybridization specific to nitrides and oxides leads to significant renormalization of the valence band exchange splitting.
High Curie temperature of 900 K has been reported in Cr-doped AlN diluted magnetic semiconductors prepared by various methods, which is exciting for spintronic applications. It is believed that N defects play important roles in achieving the high temperature ferromagnetism in good samples. Motivated by these experimental advances, we use a full-potential density-functional-theory method and supercell approach to investigate N defects and their effects on ferromagnetism of (Al,Cr)N with N vacancies (V_N). Calculated results are in agreement with experimental observations and facts of real Cr-doped AlN samples and their synthesis. Our first-principles results are useful to elucidating the mechanism for the ferromagnetism and exploring high-performance Cr-doped AlN diluted magnetic semiconductors.