No Arabic abstract
The (In,Fe)Sb layers with the Fe content up to 13 at. % have been grown on (001) GaAs substrates using the pulsed laser deposition. The TEM investigations show that the (In,Fe)Sb layers are epitaxial and free of the inclusions of a second phase. The observation of the hysteretic magnetoresistance curves at temperatures up to 300 K reveals that the Curie point is above room temperature. The resonant character of magnetic circular dichroism confirms the intrinsic ferromagnetism in the (In,Fe)Sb layers. We suggest that the ferromagnetism of the (In,Fe)Sb matrix is not carrier-mediated and apparently is determined by the mechanism of superexchange interaction between Fe atoms (This work was presented at the XXI Symposium Nanophysics and Nanoelectronics, Nizhny Novgorod, March, 13-16, 2017 (book of proceedings v.1, p. 195), http://nanosymp.ru/UserFiles/Symp/2017_v1.pdf).
We present high-temperature ferromagnetism and large magnetic anisotropy in heavily Fe-doped n-type ferromagnetic semiconductor (In1-x,Fex)Sb (x = 20 - 35%) thin films grown by low-temperature molecular beam epitaxy. The (In1-x,Fex)Sb thin films with x = 20 - 35% maintain the zinc-blende crystal and band structure with single-phase ferromagnetism. The Curie temperature (TC) of (In1-x,Fex)Sb reaches 390 K at x = 35%, which is significantly higher than room temperature and the highest value so far reported in III-V based ferromagnetic semiconductors. Moreover, large coercive force (HC = 160 Oe) and large remanent magnetization (Mr/MS = 71%) have been observed for a (In1-x,Fex)Sb thin film with x = 35%. Our results indicate that the n-type ferromagnetic semiconductor (In1-x,Fex)Sb is very promising for spintronics devices operating at room temperature.
Here we present a study of magnetism in CTO anatase films grown by pulsed laser deposition under a variety of oxygen partial pressures and deposition rates. Energy-dispersive spectrometry and transition electron microscopy analyses indicate that a high deposition rate leads to a homogeneous microstructure, while very low rate or postannealing results in cobalt clustering. Depth resolved low-energy muon spin rotation experiments show that films grown at a low oxygen partial pressure ($approx 10^{-6}$ torr) with a uniform structure are fully magnetic, indicating intrinsic ferromagnetism. First principles calculations identify the beneficial role of low oxygen partial pressure in the realization of uniform carrier-mediated ferromagnetism. This work demonstrates that Co:TiO$_2$ is an intrinsic diluted magnetic semiconductor.
The layers of a high-temperature novel GaAs:Fe diluted magnetic semiconductor (DMS) with an average Fe content up to 20 at. % were grown on (001) i-GaAs substrates using a pulsed laser deposition in a vacuum. The transmission electron microscopy (TEM) and energy-dispersive X-ray spectroscopy investigations revealed that the conductive layers obtained at 180 and 200 C are epitaxial, do not contain any second-phase inclusions, but contain the Fe-enriched columnar regions of overlapped microtwins. The TEM investigations of the non-conductive layer obtained at 250 C revealed the embedded coherent Fe-rich clusters of GaAs:Fe DMS. The X-ray photoelectron spectroscopy investigations showed that Fe atoms form chemical bonds with Ga and As atoms with almost equal probability and thus the comparable number of Fe atoms substitute on Ga and As sites. The n-type conductivity of the obtained conductive GaAs:Fe layers is apparently associated with electron transport in a Fe acceptor impurity band within the GaAs band gap. A hysteretic negative magnetoresistance was observed in the conductive layers up to room temperature. Magnetoresistance measurements point to the out-of-plane magnetic anisotropy of the conductive GaAs:Fe layers related to the presence of the columnar regions. The studies of the magnetic circular dichroism confirm that the layers obtained at 180, 200 and 250 C are intrinsic ferromagnetic semiconductors and the Curie point can reach up to at least room temperature in case of the conductive layer obtained at 200 C. It was suggested that in heavily Fe-doped GaAs layers the ferromagnetism is related to the Zener double exchange between Fe atoms with different valence states via an intermediate As and Ga atom.
(Ga$_{1-x}$,Fe$_x$)Sb is one of the promising ferromagnetic semiconductors for spintronic device applications because its Curie temperature ($T_{rm C}$) is above 300 K when the Fe concentration $x$ is equal to or higher than ~0.20. However, the origin of the high $T_{rm C}$ in (Ga,Fe)Sb remains to be elucidated. To address this issue, we use resonant photoemission spectroscopy (RPES) and first-principles calculations to investigate the $x$ dependence of the Fe 3$d$ states in (Ga$_{1-x}$,Fe$_x$)Sb ($x$ = 0.05, 0.15, and 0.25) thin films. The observed Fe 2$p$-3$d$ RPES spectra reveal that the Fe-3$d$ impurity band (IB) crossing the Fermi level becomes broader with increasing $x$, which is qualitatively consistent with the picture of double-exchange interaction. Comparison between the obtained Fe-3$d$ partial density of states and the first-principles calculations suggests that the Fe-3$d$ IB originates from the minority-spin ($downarrow$) $e$ states. The results indicate that enhancement of the interaction between $e_downarrow$ electrons with increasing $x$ is the origin of the high $T_{rm C}$ in (Ga,Fe)Sb.
The influence of He+ ion irradiation on the transport and magnetic properties of epitaxial layers of a diluted magnetic semiconductor (DMS) (In,Fe)Sb, a two-phase (In,Fe)Sb composite and a nominally undoped InSb semiconductor has been investigated. In all layers, a conductivity type conversion from the initial n-type to the ptype has been found. The ion fluence at which the conversion occurs depends on the Fe concentration in the InSb matrix. Magnetotransport properties of the two-phase (In,Fe)Sb layer are strongly affected by ferromagnetic Fe inclusions. An influence of the number of electrically active radiation defects on the magnetic properties of the single-phase In0.75Fe0.25Sb DMS has been found. At the same time, the results show that the magnetic properties of the In0.75Fe0.25Sb DMS are quite resistant to significant changes of the charge carrier concentration and the Fermi level position. The results confirm a weak interrelation between the ferromagnetism and the charge carrier concentration in (In,Fe)Sb.